Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác BEFI có: BFF = 90o (gt)
BEF = BEA = 90o
=> Tứ giác BEFI là nội tiếp đường tròn đường kính BF
b) O I F A B C D E
Vì \(AB\perp CD\)nên AC = AD
=> ACF = AEC
Xét tam giác ACF và tam giác AEC có gốc chung A và ACF = AEC
=> Tam giác ACF song song với tam giác AEC => \(\frac{AC}{AF}=\frac{AB}{AC}\)
=> AE . AF = AC2
c) Theo câu b) ta có: ACF = AEC = > AC là tiếp tuyến của đường tròn ngoại tiếp của tam giác CEF (1)
Mặt khác, ta có: ACB = 90o (góc nội tiếp chứa đường tròn)
\(\Rightarrow AC\perp CB\)(2)
Từ (1) và (2) => CB chứa đường kính của đường tròn ngoại tiếp tam giác CEF, mà CB cố định nên tâm của đường tròn ngoại tiếp tam giác CEF thuộc CB cố định E thay đổi trên cung nhỏ BC.
a: góc BIM=góc BHM=90 độ
=>BMHI nội tiếp
b: góc CBM=góc MAC=góc MAK
=>góc MAK=góc MIK
a, Xét tứ giác HFEB có:
\(\widehat{FHB}+\widehat{FEB}=90+90=180^0\)
--> Tứ giác HFEB nội tiếp
b, Dùng hệ thức lượng trong \(\Delta ABC\) vuông
\(AC^2=AH.AB\)
Mà \(\Delta AHF=\Delta AEB\left(tự.chứng.minh\right)\left(g-g\right)\)
\(\Rightarrow\dfrac{AH}{AE}=\dfrac{AF}{AB}\Rightarrow AH.AB=AE.AF\\ \Rightarrow AC^2=AE.AF\)
c, Ta có AICK là tứ giác nội tiếp \(\left(\widehat{ACK}+\widehat{IKA}=180^0\right)\)
\(\widehat{IKb}+\widehat{IEB}=180^0\\ \Rightarrow\widehat{AIK}+\widehat{EIK}=\widehat{EIK}+\widehat{EBA}=180^0\\ \Rightarrow\widehat{AIK}=\widehat{EBA}\\ \Rightarrow\widehat{ACK}=\widehat{EBA}\\ Tương.tự.ta.có:\widehat{CAO}=\widehat{KEB}\\ \Rightarrow\Delta ACK=\Delta EBK\left(g-g\right)\)
\(\rightarrow\dfrac{AC}{EB}=\dfrac{CK}{KB}=\dfrac{AK}{EK}\Rightarrow EK.CK=AK.KB\\ =\dfrac{\left(EK+KC\right)^2}{4}=\dfrac{\left(AK+KB\right)^2}{4}=\dfrac{AB^2}{4}\\ \Rightarrow EK+KC=AB\\ Dấu"="\Leftrightarrow\\ EA=KC\Rightarrow\Delta CKE.cân.tại.K\\ \Rightarrow Sđ\widehat{BE}=Sđ\widehat{AC}\\ \Rightarrow E\in\widehat{BC}.sao.cho.Sđ\widehat{BE}=Sđ\widehat{AC}.hay.BE=AC\)
1. Xét tam giác AEB có: AB là đường kính \(\Rightarrow\Delta AEB\) vuông tại E
Xét tứ giác HFEB có: \(\left\{{}\begin{matrix}\widehat{FHB}=90^o\\\widehat{FEB}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{FHB}+\widehat{FEB}=180^o\)
\(\Rightarrow\)Tứ giác HFEB nội tiếp đường tròn (đpcm)
2. Xét tam giác ABC có: đường kính AB \(\Rightarrow\Delta ABC\) vuông tại C
\(\Rightarrow AC^2=AH.AB\)
Mà \(\Delta AHF\sim\Delta AEB\) \(\Rightarrow AC^2=AF.AE\) (đpcm)
3. Câu này mình chịu @@