Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
toan lop 8 thi mk chiu thoi mk moi hoc lop 7 .ket ban vs mk nhe
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình của ΔABC
Suy ra: MN//BC
hay BMNC là hình thang
MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE, MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)
1) a. xét trong tam giác ABC có
I trung điểm AB và K trung điểm AC =>IK là đường trung bình của tam giác ABC=>IK song song với BC
vậy BCKI là hình thang (vì có hai cạng đáy song song)
b.
IK // và =1/2BC (cm ở câu a) =>IK song song NM
M trung điểm HC và N trung điểm HB mà HB+HC=CB =>MN=IK=1/2BC
suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK
a) Xét \(\Delta\)ABC ta có :
M là trung điểm AB
N là trung điểm AC
=> MN là đường trung bình
=> MN//BC , MN = 1/2 BC (1)
=> MNCB là hình thang
b) Xét tam giác ABC ta có :
N , P là trung điểm AC , BC (2)
=> NP là đường trung bình
Từ (1) và (2) => MNPB là hình bình hành
a) Xét \(\Delta\)ABC có: M; N là trung điểm của AB; AC
=> MN là đường trung bình của \(\Delta\)ABC (1)
=> MN//BC
=> BCNM là hình thang
b) (1) => MN //= \(\frac{1}{2}\) BC mà BP = \(\frac{1}{2}\)BP va B; P; C thẳng hàng ( vì P là trung điểm BC )
=> MN// = BP => MNPB là hình bình hành
c) MN // BC => MN // HP => MNHP là hình thang
(b) => ^MNP = ^MBP => ^MNP = ^MBH (2)
Lại có: ^NMH = ^MHB ( so le trong ) ( 3)
Mặt khác: \(\Delta\)AHB vuông tại H có HM là trug tuyến đáy AB
=> HM = \(\frac{1}{2}\)AB = BM
=> \(\Delta\)MHB cân tại M => ^MBH = ^MHB (4)
Từ (2) ; (3) ; (4) => ^NMH = ^MNP
=> MNPH là hình thang cân
b) Điều kiện để HPNM là hình chữ nhật:
Ta có: HPNM là hình thang cân
=> HPNM là hình chữ nhật MH vuông góc BC
Mặt khác ta có: AH vuông góc BC
=> A; M; H thẳng hàng mà A; M; B thẳng hàng
=> H trùng B
=> Tam giác ABC vuong tại B.
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a: Xét ΔBAC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
b: Xét ΔABC có
M là trung điểm của AB
K là trung điểm của BC
Do đó: MK là đường trung bình của ΔBAC
Suy ra: MK//AC và \(MK=\dfrac{AC}{2}\)
mà N\(\in\)AC và \(AN=\dfrac{AC}{2}\)
nên AN//MK và AN=MK
Xét tứ giác AMKN có
AN//MK
AN=MK
Do đó: AMKN là hình bình hành