Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nhá
Lời giải:
trên tia AB lấy điểm N sao cho AN=AC. Do AB>AC nên N nằm giữa A và B
Vậy AB - AC = AB - AN = BN
dễ dàng chứng minh đc tam giác AEN = tam giác AEC (cgc), suy ra EN = EC (2 cạnh tương ứng)
Xét tam giác EBN có: BN > EB - EN (hệ quả của bất đẳng thức trong tam giác)
mà BN = AB - AC ( đã chứng minh)
=> AB - AC > EB - EN
lại có EN = EC (đã chứng minh), suy ra AB - AC > EB - EC ( đpcm)
ko tránh khỏi thiếu sót, nếu sai ai đó sửa lại nhé. Thắc mắc gì cứ hỏi
_Hết_
Có gì sai sót mong bạn góp ý
Trên AC lấy điểm H sao cho AH=AB
Ta có:
AH=AC-CH
Mà AH=Ab
=>AB+AC-CH
=>CH=AC-AB(1)
Xét tam giác AHE và tam giác ABE có
AH=AB(gt)
HAE=BAE
AE chung
=> Tam giác AHE=tam giác ABE(c-g-c)
=>EH=EB(2 cạnh tương ứng)
Xét tam giác EHC có
HC>EC-EH
Mà EB=EH
=>HC>EC-EB(2)
Từ (1) và (2)=>AC-AB>EC-EB
a:
AB+BF=AF
AE+EC=AC
mà AB=AE và AC=AF
nên BF=EC
Xét ΔAEF và ΔABC có
AE=AB
\(\widehat{EAF}\) chung
AF=AC
Do đó: ΔAEF=ΔABC
=>\(\widehat{AEF}=\widehat{ABC}\) và \(\widehat{AFE}=\widehat{ACB}\)
\(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)
nên \(\widehat{FBD}=\widehat{DEC}\)
Xét ΔDBF và ΔDEC có
\(\widehat{DBF}=\widehat{DEC}\)
BF=EC
\(\widehat{DFB}=\widehat{DCE}\)
Do đó: ΔDBF=ΔDEC
=>DB=DE
Xét ΔABD và ΔAED có
AB=AE
BD=ED
AD chung
Do đó: ΔABD=ΔAED
=>\(\widehat{BAD}=\widehat{EAD}\)
=>AD là phân giác của \(\widehat{BAC}\)
b: Xét ΔABM và ΔAEM có
AB=AE
\(\widehat{BAM}=\widehat{EAM}\)
AM chung
Do đó: ΔABM=ΔAEM
=>MB=ME
AC-AB=EC
mà EC>MC-ME
và MC=MF
nên AC-AB>MC-ME=MC-MB(ĐPCM)