K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AHBD có

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật

b: Vì AHBD là hình chữ nhật

nên AD//BH và AD=BH

=>AD//EH và AD=EH

=>ADHE là hình bình hành

13 tháng 12 2017

A C B H M D E F I J

a) Xét tứ giác AHBD có MB = MA; MD = MH nên nó là hình bình hành (dhnb). 

Lại có \(\widehat{BHA}=90^o\) nên AHBD là hình chữ nhật (dhnb).

b) Do AHBD là hình chữ nhật nên AD song song và bằng HB.

Lại có HB = HE nên AD song song và bằng HE.

Xét tứ giác ADHE có AD song song và bằng HE nên nó là hình bình hành (dhnb)

c) Lấy J là trung điểm AF.

Do AB và EF cùng vuông góc với AC nên BAFE là hình thang vuông.

Lại có H, J là trung điểm các cạnh bên nên HJ là đường trung bình của hình thang.

Vậy nên HJ // AB // EF hay \(HJ\perp AF\)  

Xét tam giác AHF có HJ là trung tuyến đồng thời đường cao nên nó là tam giác cân.

Vậy thì HA = HF.

d) Xét tam giác vuông EFC có FI là trung tuyến ứng với cạnh huyền nên FI = IC hay \(\widehat{IFC}=\widehat{ICF}\)

Lại có \(\widehat{ICF}=\widehat{BAH}\) (Cùng phụ với góc HAC)

Nên \(\widehat{IFC}=\widehat{BAH}\)

Ta cũng có \(\widehat{HFE}=\widehat{JHF}\)  (Hai góc so le trong)

\(\widehat{JHF}=\widehat{JHA}\) (HJ là phân giác)

\(\widehat{JHA}=\widehat{BAH}\)  (Hai góc so le trong)

nên \(\widehat{HFE}=\widehat{BAH}\)

Vậy thì \(\widehat{IFC}=\widehat{HFE}\)

Từ đó ta có : \(\widehat{IFC}+\widehat{EFI}=\widehat{HFE}+\widehat{EFI}\Rightarrow\widehat{HFI}=\widehat{EFC}=90^o\)

Hay \(HF\perp FI\)

22 tháng 12 2021

\(a,\) Vì M là trung điểm AB cà DH nên AHBD là hình bình hành

Mà \(\widehat{AHB}=90^0\) (đường cao AH) nên AHBD là hcn

\(b,\) Vì AHBD là hcn nên \(AD=BH;AD\text{//}HB\)

Mà \(BH=HE\Rightarrow AD=HE;AD\text{//}HE\)

Do đó: ADHE là hình bình hành

\(c,\) Vì ADHE là hbh mà N là giao AH và DE nên N là trung điểm AH và DE

Mà M là trung điểm AB nên MN là đtb \(\Delta ABH\)

Do đó \(MN//BH\) hay \(MN//BC\)

Ta có N là trung điểm AH và K là trung điểm AC nên NK là đtb \(\Delta ACH\)

Do đó \(NK//HC\) hay \(NK//BC\)

Do đó theo định lí Ta lét thì MN trùng NK hay M,N,K thẳng hàng

22 tháng 12 2021

a: Xét tứ giác AHBD có

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật

a: Xét tứ giác AHCD có

M là trung điểm chung của AC và HD

góc AHC=90 độ

=>AHCD là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

=>ADHE là hình bình hành

 

20 tháng 12 2022

a: Xét tứ giác ADCH có

M là trung điểm chung của AC và HD

góc AHC=90 độ

Do đó: ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

Do đó: ADHE là hình bình hành

 

17 tháng 12 2021

a: Xét tứ giác AHBD có 

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{HAB}=90^0\)

nên AHBD là hình chữ nhật

30 tháng 11 2018

ứ giác HDAE có ^A=^D=^E=90 độ 
nên HDAE là hình chữ nhật, suy ra AH=DE. 

b) ∆BDH vuông tại D có DP là trung tuyến nên PD=PH 
suy ra ∆PDH cân tại P nên ^PDH=PHD (1) 
Do ADHE là hình chữ nhật nên ^ODH=^OHD (2) 
công vế với vế của (1) và (2) ta có: 
^PDH+^ODH=^PHD+^OHD=^OHP=90 độ 
Hay ^PDO=90 độ, nên PD┴DE. (3) 
Chứng minh tương tự cuãng có QE┴DE (4) 
từ (3) và (4) suy ra PD//QE 
nên DEQP là hình thang vuông. 

c) BO và AH là đường cao của ∆ABQ nên O là trực tâm 
của ∆ABQ. ADHE là hình chữ nhật nên S(ADHE)=2S(DHE) (5) 
d)∆BDH vuông tại D có DP là trung tuyến 
nên S(BDH)=2S(DPH) (6) 
tương tự S(HAC) = 2S(HEQ) (7) 
Cộng vế với vế của (5), (6), (7) 
thì S(ABC)=2S(DEQP)

30 tháng 11 2018

dạ em cám ơn chị ạ

11 tháng 12 2017

A B C M H F D K I G

Câu a và b cô hướng dẫn:

a) Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

b)  Tứ giác FDEA là hình bình hành nên AF // DE

c) Xét tam giác AFH có AD là đường cao đồng thời trung tuyến nên nó là tam giác cân.

Vậy thì AD là tia phân giác hay \(\widehat{FAD}=\widehat{DAH}\)

Do tam giác ABC vuông tại A, M là trung điểm BC nên  MA = MB = MC hay \(\widehat{BAM}=\widehat{ABM}\)

Vậy thì \(\widehat{FAD}+\widehat{BAM}=\widehat{DAH}+\widehat{ABM}=90^o\)

\(\Rightarrow\widehat{FAM}=90^o\)

Vậy tam giác AFM vuông.

c) Gọi giao điểm của AM và DE là G.

Do FA // DE mà AM vuông góc FA nên AM vuông góc DE.

Vậy thì ta có ngay AFDE là hình chữ nhật.

Suy ra KG giao AD tại trung điểm mỗi đường hay I cũng là trung điểm KG.

Vậy thì AM, DE và KI đồng quy tại điểm G.

16 tháng 12 2017

Em cảm ơn ạ !

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K