K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

a ) 

Xét \(\Delta ABI\)và  \(\Delta ACI\) có : 

\(\hept{\begin{cases}AB=AC\left(GT\right)\\AI\left(chung\right)\\BI=CI\left(GT\right)\end{cases}\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)}\)

\(\Rightarrow\widehat{ABI}=\widehat{ACI}\)( 2 góc tương ứng ) 

     \(\widehat{BAI}=\widehat{CAI}\)( 2 góc tương ứng ) 

Mà \(AI\)nằm trong  \(\widehat{BAC}\)

\(\Rightarrow AI\)là p/g \(\widehat{BAC}\)

b ) 

Ta có : \(\widehat{ABI}+\widehat{ABM}=180^0\) ( 2 góc kề bù ) 

\(\Rightarrow\widehat{ABM}=180^0-\widehat{ABI}\)

\(\widehat{ACI}+\widehat{ACN}=180^0\)( 2 góc kề bù ) 

\(\Rightarrow\widehat{ACN}=180^0-\widehat{ACI}\)

Lại có : \(\widehat{ABI}=\widehat{ACI}\)

\(\Rightarrow180^0-\widehat{ABI}=180^0-\widehat{ACI}\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét \(\Delta ABM\)và \(\Delta ACN\)có : 

\(\hept{\begin{cases}AB=AC\left(GT\right)\\\widehat{ABM}=\widehat{ACN}\\BM=CN\left(GT\right)\end{cases}\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)}\)

\(\Rightarrow AM=AN\)( 2 cạnh tương ứng ) 

c ) 

Do \(\widehat{BAI}=\widehat{CAI}\left(theo:a\right)\)

hay \(\widehat{BAK}=\widehat{CAK}\)

Xét \(\Delta ABK\)và \(\Delta ACK\)có : 

\(\hept{\begin{cases}AB=AC\left(GT\right)\\\widehat{BAK}=\widehat{CAK}\left(cmt\right)\Rightarrow\\AK\left(chung\right)\end{cases}\Delta ABK=\Delta ACK\left(c.g.c\right)}\)

\(\Rightarrow\widehat{ABK}=\widehat{ACK}\)( 2 góc tương ứng ) 

Mà \(\widehat{ABK}=90^0\left(BK\perp AB\right)\)

\(\Rightarrow\widehat{ACK}=90^0\)

\(\Rightarrow KC\perp AC\left(Đpcm\right)\)

22 tháng 6 2019

A B C M N I 1 2 1 2 E F

CM: Ta có: \(\widehat{BIM}+\widehat{MIN}+\widehat{NIC}=\widehat{BIC}\)

=> \(\widehat{BIC}=2.30^0+90^0=150^0\)

Ta lại có : \(\widehat{FIB}+\widehat{BIC}=180^0\) (kề bù)

=> \(\widehat{FIB}=180^0-\widehat{BIC}=180^0-150^0=30^0\)

=> \(\widehat{FIB}=\widehat{EIC}=30^0\) (đối đỉnh)

Xét t/giác FIB và t/giác MIB

có : \(\widehat{B_1}=\widehat{B_2}\) (gt)

   BI : chung

  \(\widehat{FIB}=\widehat{BIM}=30^0\)  

=> t/giác FIB = t/giác  MIB (g.c.g)

=> BF = BM (2 cạnh t/ứng)

Xét t/giác EIC và t/giác NIC

có : \(\widehat{C_1}=\widehat{C_2}\) (gt) 

  IC : chung

   \(\widehat{EIC}=\widehat{NIC}=30^0\)

=> t/giác EIC = t/giác NIC (g.c.g)

=> EC = IN (2 cạnh t/ứng)

Ta có: BC = BM + MN + NC 

hay BC = BF + MN + EC

=> CE + BF = BC - MN  => CE + BF < BC (Đpcm)

Bài 1: dễ, nếu cậu tk tớ sẽ giải

Bài 2: ( tự vẽ hình nhess)

Xét tam giác ABN có BC là trung tuyến ứng AN(CA=CN-gt)

mà BM=2/3 BC

=> M la trọng tâm tam giác ABN( khoảng cách từ điểm đến trọng tâm bằng 2/3 trung tuyến tương ứng)

=> AM là trung tuyến ứng BN

mà AM được kéo dài cắt BN tại I nên I là trung điểm BN

a ) Xét  ∆BAD và  ∆CAD
AB = AC (  ∆ABC cân )
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{DAC}\)
=>  ∆ABH =  ∆ACH(g.c.g)

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC