K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Chứng minh ΔAMB=ΔCMD

Xét ΔAMB và ΔCMD có

BM=MD(gt)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

AM=MC(do M là trung điểm của AC)

Do đó: ΔAMB=ΔCMD(c-g-c)

2) Chứng minh AB=CD và AB//CD

Ta có: ΔAMB=ΔCMD(cmt)

⇒AB=CD(hai cạnh tương ứng)

Ta có: ΔAMB=ΔCMD(cmt)

\(\widehat{BAM}=\widehat{DCM}\)(hai góc tương ứng)

\(\widehat{BAM}\)\(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên AB//CD(dấu hiệu nhận biết hai đường thẳng song song)(đpcm)

3) Chứng minh E,M,F thẳng hàng

Xét tứ giác AFCE có

AE//FC(AB//CD, E∈AB, F∈CD)

AE=FC(gt)

Do đó: AFCE là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒hai đường chéo AC và FE cắt nhau tại trung điểm của mỗi đường(định lí hình bình hành)

mà M là trung điểm của AC(gt)

nên M là trung điểm của FE

hay F,M,E thẳng hàng(đpcm)

10 tháng 2 2016

ủng hộ mình lên 110 với các bạn

10 tháng 2 2016

ai bt làm giải giùm mik đi please

 

1 tháng 3 2018

a) Xét \Delta AMBΔAMB và \Delta DMCΔDMC có:

AB=AC(gt)

AM=MD(gt)

MB=MC(gt)

=>\Delta AMB=\Delta DMC\left(c.c.c\right)ΔAMBDMC(c.c.c)

b) Vì: \Delta AMB=\Delta DMC\left(cmt\right)ΔAMBDMC(cmt)

=> \widehat{MAB}=\widehat{MDC}MAB=MDC . Mà hai góc này ở vị trí sole trong

=>AB//DC

# Study well 'v' 

24 tháng 12 2020

a) Xét \(\Delta AMB\) và \(\Delta DMC\) , ta có: 

AB = AC (gt)

AM=MD (gt)

MD=MC (gt)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.c.c\right)\) 

b) Vì: \(\Delta AMB=\Delta DMC\left(cmt\right)\)

\(\Rightarrow\widehat{MAB=\widehat{MDC}}\)

\(\Rightarrow AB\) //   \(DC\)

#Chúc bạn học tốt ^^

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét tứ giác ABCD có 

M la trung điểm của AC

M là trung điểm của BD

DO đó: ABCD là hình bình hành

Suy ra: AB//CD và AB=CD

2 tháng 1 2016

a) xét tam giác AMBvà tam giácCMD có 

góc AMB=gócCMD(đối đỉnh)

MA=MC

MD=MB

suy ra tam giác AMB=tam giác CMD

b) tam giác AMB=tam giác CMD(câu a)

AB=CD(hai cạnh tương ứng)

góc DCM=góc MAB(hai góc tương ứng và so le trong)

suy ra AB//CD

câu c đang tìm hiểu từ từ nha tick đi rồi giải câu c luôn cho

 

 

2 tháng 1 2016

A B E D C M

a) Xét \(\Delta\)AMB & \(\Delta\)CMD có:

MB=MD( giả thiết)

góc AMB= góc CMD(2 góc đối đỉnh)

AM=MC( vì M là trung điểm của AC)

=>\(\Delta\)AMB=\(\Delta\)CMD(c.g.c)

b) Theo a) \(\Delta\)AMB=\(\Delta\)CMD

=>AB=CD(2 cạnh tương ứng)

=>góc BAM= góc DCM( 2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong=>AB//CD

c) theo b) AB//CD

=> góc ABC= góc BCE( 2 góc so le trong)

Ta có: AB=CD( theo c/m b)

mà CD=CE( vì C là trung điểm DE)

=>AB=EC

Xét \(\Delta\)ABC & \(\Delta\)ECB có:

AB=EC( theo c/m trên)

góc ABC= góc ECB( theo cm trên)

AC là cạnh chung

=>\(\Delta\)ABC=\(\Delta\)ECB(c.g.c)

=>góc ACB= góc EBC( 2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

=>AC//BE

 

8 tháng 12 2018

a, xét tam giác abm vvaf tam giác dmc có

am=md(gt)

bm=mc(gt)

góc amb=góc cmd(đối đỉnh)

=>tam giác abm=tam giác dmc(cgc)

b, từ cm a ta có tam giác abm=tam giác dmc(cgc)

=>góc bam = góc mdc (2 góc tg ứng)

mà 2 góc lại nằm ở vị trí so le trg

=>ab//cd

6 tháng 1 2022

a/(c.g.c)

b/ CE=AB ( cặp cạnh tương ứng)

Mà: AB<BC( cạnh huyền lớn nhất)

Nên CE<BC

c/góc ABM=góc CEM(cặp góc tương ứng)  (1)

Xét tam giác BCE có: CE<BC( CMT)

Suy ra góc CEM<góc MBC  (2)  ( Quan hệ giữa góc và cạnh đối diện trong 1 tam giác)

Vậy: từ (1) và (2), ta có: góc ABM< góc MBC

d/góc ABM=góc CEM, lại ở vị trí SLT nên AE//BC