Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E K I M N
a) Xét 2 tam giác ABD và EBD vuông tại A và C có:
BD:cạnh chung
ABD=EBD( vì BD là tia phân giác)
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
\(\Rightarrow AB=BE\)(2 cạnh tương ứng)
b)\(\Rightarrow AD=DE\)
Mà DE <DC( vì cạnh góc vuông<cạnh huyền)
\(\Rightarrow AD< DC\left(dpcm\right)\)
c) Vì AD=DE và AK=KC(cmt)
\(\Rightarrow\Delta AKD=\Delta ECD\)(2 cạnh góc vuông)
\(\Rightarrow\widehat{ADK}=\widehat{EDC}\)( 2 góc tương ứng)
Mà ADE+EDC=180 độ
\(\Rightarrow KDA+ADE=180^0\)
\(\Rightarrow KDE=180^0\)
\(\Rightarrow K,D,E\)thẳng hàng
d) Gọi \(IM\perp AB;IN\perp AC\)
Xét tam giác ABC có M là trung điểm của AB và IM//AC
\(\Rightarrow I\)là trung điểm của BC ( theo tính chất đường trung bình trong tam giác)
Phần b là mà DE<DC vì cạnh góc vuông nhỏ hơn cạnh huyền nha bạn
tự vẽ hình đi nhá
a) xét ∆ABD và ∆EBD vuông tại A và E có:
BD chung
\(\widehat{ABD}=\widehat{DBE}\left(gt\right)\)
=> ∆ABD=∆EBD (cạnh huyền - góc nhọn)
b) xét ∆EDC có DC>DE (vì DC là cạnh huyền)
mà AD=DE (vì ∆ABD=∆EBD)
=> AD<CD (đpcm)
c) xét ∆KAD và ∆CED vuông tại A và E có
AD=DE (vì ∆ABD=∆EBD)
AK=EC (gt)
=> ∆KAD=∆CED (cgv-cgv)
=> \(\widehat{ADK}=\widehat{EDC}\)
mà 2 góc này ở vị trí đối đỉnh
=> K, D, E thẳng hàng (cách này bn nên tham khảo)
d) gọi đường trung trực của AC giao tại AC là H
Xét ∆AIC có
IH vừa là đường cao vừa là trung tuyến
=> ∆AIC cân tại I
=> AI=IC
Xét ∆ABC có
AI=IC
=> AI=IC=BI (tính chất đường trung tuyến của tam giác vuông)
=>I là trung điểm của BC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a. Xét tam giác ABD vuông tại A và tam giác BED vuông tại E có:
BD : Cạnh chung
Góc ABD = góc DBE (BD phân giác)
=> Tam giác ABD = tam giác BED (cạnh huyền - góc nhọn)
b. Ta có BA = BE (Tam giác = tam giác câu a)
=> tam giác BAE cân tại B.
Lại có BD là phân giác tam giác BAE => BD vừa là phân giác vừa là đường trung trực của đoạn AE.
c. Xét tam giác EDC vuông tại E:
DE < DC (Cạnh góc vuông nhỏ hơn cạnh huyền)
Mà DE = DA (Tam giác = tam giác câu a)
=> DA < DC.
d. Xét tam giác ADF và tam giác EDC:
DA = DE (tam giác = tam giác câu a)
DAF = DEC (=90 độ)
AF = EC (gt)
=> Tam giác ADF = tam giác EDC (C.g.c)
=> ADF = EDC (góc tương ứng)
Mặt khác : EDC + EDA = 180 độ .
Từ đó suy ra : EDA + ADF = 180 độ.
Vậy E,D,F thẳng hàng.
Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)
Ta có
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
a Xét ΔBAD vuông tại A và ΔEAD vuông tại E có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)
Do đó: ΔBAD=ΔEAD
b: Ta có: ΔABD=ΔAED
=>AB=AE và DB=DE
Ta có: AB=AE
=>A nằm trên đường trung trực của BE(1)
Ta có: DB=DE
=>D nằm trên đường trung trực của BE(2)
Từ (1),(2) suy ra AD là đường trung trực của BE
c: Xét ΔDBK vuông tại B và ΔDEC vuông tại E có
DB=DE
BK=EC
Do đó: ΔDBK=ΔDEC
=>\(\widehat{BDK}=\widehat{EDC}\)
mà \(\widehat{EDC}+\widehat{BDE}=180^0\)(hai góc kề bù)
nên \(\widehat{BDE}+\widehat{BDK}=180^0\)
=>E,D,K thẳng hàng
a) Xét Δ���ΔBAD và Δ���ΔEAD:
���^=���^=90∘ABD=AED=90∘.
��AD chung.
���^=���^(��)BAD=EAD(gt).
Suy ra Δ���=Δ���ΔBAD=ΔEAD { (cạnh huyền - góc nhọn)
b) Do Δ���=Δ���ΔBAD=ΔEAD (câu a) nên + ) ��=��AB=AE (Cặp cạnh tương ứng)
�A nằm trên đường trung trực của đoạn thẳng ��BE (1)
+) ��=��DB=DE (Cặp cạnh tương ứng)
�D nằm trên đường trung trực của đoạn thẳng ��BE (2)
Từ (1) và (2) ta suy ra ��AD là đường trung trực của ��BE.
c) Xét Δ���ΔBDK và Δ���ΔEDC:
���^=���^KBD=CED.
��=��BK=CE (gt).
��=��BD=DE.
Suy ra Δ���=Δ���ΔBDK=ΔEDC (c.g.c)
Suy ra ���^=���^BDK=EDC (Cặp góc tương ứng) (1)
Mặt khác ta có �D thuộc cạnh ��BC nên ���^+���^=180∘EDC+EDB=180∘. (2)
v
Từ (1) và (2) suy ra ���^+���^=180∘BDK+EDB=180∘.
Hay ba điểm �,�,�E,D,K thẳng hàng.