K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tạiH và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

b: góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

c:

\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

 \(AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\)

=>DE=7,2cm

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Lời giải:

a/ Tứ giác $AEHF$ có 3 góc vuông: $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.

$\Rightarrow AH=EF$

b/ $HF=AE$ (do $AEHF$ là hcn) 

Xét tam giác $AEH$ và $AHB$ có:

$\widehat{A}$ chung

$\widehat{AEH}=\widehat{AHB}=90^0$

$\Rightarrow \triangle AEH\sim \triangle AHB$ (g.g)

$\Rightarrow \frac{AE}{AH}=\frac{AH}{AB}$

$\Rightarrow AE=\frac{AH^2}{AB}=\frac{AB^2-BH^2}{AB}=\frac{6^2-3,6^2}{6}=3,84$ (cm)

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Hình vẽ:

22 tháng 12 2023

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>AH=EF

b: Ta có: ΔABH vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=6^2-3,6^2=23,04\)

=>\(HA=\sqrt{23,04}=4,8\left(cm\right)\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\)

=>\(AE\cdot6=4,8^2=23,04\)

=>\(AE=\dfrac{23.04}{6}=3,84\left(cm\right)\)

AEHF là hình chữ nhật

=>AE=HF

mà AE=3,84cm

nên HF=3,84cm

loading...

22 tháng 12 2023

Các bạn vẽ giúp mik hình với nha

3 tháng 3 2016

Sade=320

Sadc=800