K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

B H M A C N

( Hình ảnh chỉ mang tính chất minh họa )

a) Tính BC và AH :

Tam giác ABC vuông tại A, áp dụng định lý Pytago vào tam giác ABC :

AB2+AC2=BC2AB2+AC2=BC2

82+152=BC282+152=BC2

BC=17(cm)⇒BC=17(cm)

Ta có : SABC=12ABAC=12AHBCSABC=12⋅AB⋅AC=12⋅AH⋅BC

AH=ABACBC=81517=12017(cm)⇔AH=AB⋅ACBC=8⋅1517=12017(cm)

b) Có Aˆ=900A^=900(giả thiết), Mˆ=900M^=900(hình chiếu), Nˆ=900N^=900(hình chiếu)

=> Tứ giác AMHN là hình chữ nhật (tứ giác có 3 góc bằng 90 độ).

Vì tứ giác AMHN là hình chữ nhật => Hai đường chéo bằng nhau.

MN=AH=12017(cm)⇒MN=AH=12017(cm)

c) Vì N là hình chiếu của H trên AC NAC⇒N∈AC

mà MHMH//AN(hcn)AN(hcn) => MHMH//ACAC

Theo hệ quả của định lý Ta-let => AMAB=ANACAMAB=ANAC

Suy ra : AMAC=ANAB(đpcm)

20 tháng 5 2022

loading...  loading...  đánh giá tốt giúp mk vs ạ

17 tháng 4 2017

làm sao để xem câu trả lời

25 tháng 4 2022

a) XétΔABC vg tại A

⇒ BC²=AB²+AC²

⇒ BC=17cm

Xét ΔABH và ΔCBA có:
góc AHB= góc CBA

góc B: chung

⇒ ΔABH ∞ ΔCBA (g.g)
⇒ AB/BC=BH/BA

⇒ BH=AB²/BC

⇒ BH=64/17

Xét ΔABH vg tại H 

⇒AB²=BH²+AH²

⇒ AH=120/17

b) xét tg AMHN có: góc AMH= góc ANH= góc MAN=90

⇒ tg AMHN là hcn (dhnb)

⇒ AH=MN (t/c hcn)

⇒ MN=120/17

, Ta thấy tam giác AMH đồng dạng tam giác AHB (g.g) suy ra AM/AH = AH/ AB => AM.AB =AH^2

tam giác ANH đồng dạng tam giác AHC (g.g)
=> AN/AH = AH/AC
=> AN.AC = AH^2

suy ra AM.AB = AN.AC.

2 tháng 6 2020

áp dụng Pytago cho tam giác ABC ta đc: BC= \(\sqrt{15^2+8^2}=17\)

diện tích tam giác  ABC=1/2. AB.BC = 1/2 AH.BC => AB.BC=AH.BC=> AH=15.8:17=120/17

b, Tứ giác AMNH là hình chữ nhật vì có 3 góc vuông.

suy ra MN=AH = 120/17

c, Ta thấy tam giác AMH đồng dạng tam giác AHB (g.g) suy ra AM/AH = AH/ AB => AM.AB =AH^2

tam giác ANH đồng dạng tam giác AHC (g.g) => AN/AH = AH/AC => AN.AC = AH^2

suy ra AM.AB = AN.AC.

d. góc HAB = góc ACB ( cùng phụ góc CAH)

suy ra tam giác AMH đồng dạng tam giác CAB.

theo bài ta có \(S_{AMHN}=2S_{AMH}=\frac{1}{2}S_{CAB}\)

suy ra \(\frac{S_{AMH}}{S_{CAB}}=\frac{1}{4}\) mà 2 tam giác này đồng dạng nên suy ra \(\left(\frac{AH}{BC}\right)^2=\frac{1}{4}\Rightarrow\frac{AH}{BC}=\frac{1}{2}\Rightarrow AH=\frac{1}{2}BC\)

do đó tam giác ABC phải vuông cân.

29 tháng 5 2019

Bổ sung đề bài câu d,

Tam giác ABC cần thêm điều kiện gì để diện tích tứ giác AMHN bằng \(\frac{1}{2}\) diện tích tam giác ABC.

18 tháng 3 2023

   

18 tháng 3 2023

File: undefined 

26 tháng 3 2016

mình tóm tắt thôi nha

▲MHA đồng dạng ▲HBA(g-g)

▲ABC đồng dạng ▲HBA(g-g)

suy ra ▲MHA đồng dạng ▲ABC

▲MHA đồng đăng ▲ANM 

suy ra ▲ANM đồng dạng ▲ABC

suy ra tỉ số rồi ra

b)áp dụng PY-ta-go thì 

BC =25cm

ta có S▲ABC =1/2 AB.AC

mặt khác S▲ABC=1/2 AH.BC

suy  ra AB.AC=AH.BC

suy ra AH=(15.20)/25=12cm

ta có ▲ANM đồng dạng ▲ABC 

suy ra \(\frac{NM}{BC}=\frac{AM}{AC}\)

\(\Rightarrow\frac{AH}{BC}=\frac{AM}{AC}=\frac{12}{25}\)

\(\Rightarrow\frac{S▲ANM}{S▲ABC}=\left(\frac{12}{25}\right)^2=0,2304\)

nhớ kick cho mình nha

26 tháng 3 2016

câu b) tính tỉ số diện tích dùm mình lun nha bạn cần gắp lắm!!!!!!!!!!