Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì Đường tròn (O;R) có đường kính BC cắt AB, AC lần lượt là F và E => góc HEA = góc HFA = 90o
mà hai góc này là hai góc đối nhau=> tứ giác AFHE nội tiếp
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
a/ Ta có góc BDC=90 độ ( góc nt chăn nửa đường tròn)
suy ra góc ADH = 90 độ ( kề bù )
góc BEC= 90 độ ( góc nt chắn nửa đường tròn)
suy ra góc AEH = 90 độ ( kề bù )
Tư giác ADHE có góc ADH + góc AEH = 90 độ + 90 độ = 180 độ
Hại góc ở vị tri đối nhau . Do đó tứ giác ADHE nt đường tròn.
b/
c/Ta có góc BDC = 90 độ ( góc nt chắn nửa đt)
góc BEC = 90 độ ( góc nt chắn 1/2 đt)
Tứ giác BDEC có hai đỉnh kề D và E cùng nhìn BC dưới một góc vuông . Do đó tứ giác BDEC nt
suy ra góc BDE + góc BCE = 180 độ (1)
Mặt khác : góc ADE + góc BDE = 180 độ ( kề bù ) (2)
(1) (2) suy ra góc ADE = góc ACB
Xét tam giác ADE và tam giác ACB có
goc BAC chung
goc ADE = góc BAC (cmt)
suy ra tam giác ADE đồng dạng tam giác ACB (g.g)
nên AD/AC = AE/AB
hay AD.AB =AE.AC.