Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
4 mũ chẵn có tận cùng bằng 6
nen 2014
2014có tận cùng bằng 6
S=1+3+32+33+...+320
3S=3+32+33+...+320+321
3S-S=321-1
2S=321-1
S=(321-1):2
Đặt S = 1+ 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 20 (1)
=> 3S = 3 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + ... + 3 mũ 21 (2)
Lấy ( 2 ) trừ ( 1 ) vế theo vế , ta được :
3S - S = 3 mũ 21 - 1
2S = 3 mũ 21 - 1
S = ( 3 mũ 21 - 1 ) : 2
ĐÂY LÀ LỜI GIẢI CHI TIẾT HƠN NHA MẤY BẠN
BÀI CỦA BẠN KIA ĐÚNG RỒI NHA !!!!!!!
CHỈ LÀ MÌNH GIẢI CHI TIẾT CHO CÁC BẠN HIỂU HƠN THÔI !!!!!
THANKS NHIỀU
Ta có:
\(S=2.3^0+2.3+2\cdot3^2+...+2.3^{2020}\)
\(\Rightarrow3S=2.3+2.3^2+2.3^3+...+2.3^{2021}\)
\(\Rightarrow3S-S=2\left[\left(3+3^2+...+3^{2021}\right)-\left(1+3+...+3^{2020}\right)\right]\)
\(\Leftrightarrow2S=2\left(3^{2021}-1\right)\)
\(\Rightarrow S=3^{2021}-1\)
Vì \(3^{2021}=3^{2020}\cdot3=\overline{...1}\cdot3=\overline{...3}\)
\(\Rightarrow S=\overline{...3}-1=\overline{...2}\)
Vậy S có cstc là 2
(2*3)^0+(2*3)^1+(2*3)^2+...+(2*3)^2020
=6^0+6^1+6^2+...+6^2020
=...1+...6+...6+...+...+...6
=vì có 2019 số ...6
mà có các TH chữ số tận cùng như sau:...6;...2;...4;...8
mà 2019 chia 4 dư 3 nên số cuối cùng của tổng ...6+...6+...6+.....+...6=...4
ta có: ...1+...4=...5
vậy chữ số tận cùng củ S là 5
cái phần gạch ngang trên đầu bị lỗi nha,SORRY
Số tự nhiên n thỏa mãn \(n^k\left(k\inℕ^∗\right)\) có tận cùng là 9 khi và chỉ khi \(n\) có chữ số tận cùng là 3, 7 hoặc 9.
TH1: Nếu \(n\) có chữ số tận cùng là \(3\) thì ta có nhận xét là \(n^{4k}\) có chữ số tận cùng là 1 với mọi số tự nhiên \(k\). Thật vậy, với \(k=0\) thì \(n^0=1\) có tận cùng là 9. Giả sử khẳng định đúng đến \(k=l\). Với \(k=l+1\) thì \(n^{4\left(l+1\right)}=n^{4l+4}=n^4.n^{4l}=\overline{A1}.\overline{B1}\) có chữ số tận cùng là 1. Vậy khẳng định được chứng minh. Do đó, \(n^{9012}=n^{4.2253}\) có chữ số tận cùng là 1, không thỏa ycbt.
TH2: \(n\) có chữ số tận cùng là 7 thì làm tương tự với TH1, \(n^{4k}\) luôn có chữ số tận cùng là 7 nên không thỏa ycbt.
TH3: \(n\) có chữ số tận cùng là 9 thì \(n^{2k}\) luôn có chữ số tận cùng là 1. Như vậy, không thể có số tự nhiên \(n\) nào thỏa mãn ycbt.