Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a\(\in\)Z thì a3-a=(a-1)a(a+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2,3
Mà (2,3)=1 => a3-a chia hết cho 6
=> S-P=(a13-a1)+(a23-a2)+....+(an3-an) chia hết cho 6
Vậy S chia hết cho 6 <=> P chia hết cho 6
a) Giả sử đa thức f(x) sau khi lũy thừa bậc 2012 viết ra dưới dạng tổng quát:
\(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_2x^2+a_1x+a_0\)
Thì: \(f\left(1\right)=a_n+a_{n-1}+a_{n-2}+...+a_2+a_1+a_0=\left(1^2+3\cdot1-1\right)^{2012}=3^{2012}\)(1)
Hay TỔNG của tổng hệ số các hạng tử chứa lũy thừa bậc chẵn và tổng hệ số các hạng tử chứa lũy thừa bậc lẻ là 32012
Và: \(f\left(-1\right)=a_0-a_1+a_2-a_3+...=\left(\left(-1\right)^2+3\left(-1\right)-1\right)^{2012}=\left(-3\right)^{2012}=3^{2012}\)(2)
Hay HIỆU của tổng hệ số các hạng tử chứa lũy thừa bậc chẵn và tổng hệ số các hạng tử chứa lũy thừa bậc lẻ là 32012
Vậy, tổng các hệ số của hạng tử chứa lũy thừa bậc chẵn của x là: 1/2(TỔNG + HIỆU) = 32012.
Ta thấy: \(2017^{2016}\equiv1\)(mod 6)
Từ đó: (1 <= i <= k) \(\text{Σ}n_i\equiv1\)(mod 6)
Dễ chứng minh: \(\left(6k+m\right)^3\equiv m\equiv6k+m\)(mod 6) với 0<=m<=6
Từ đó ta có: \(x^3\equiv x\)(mod 6) với x là số tự nhiên
Vậy \(\text{Σ}n_i^3\equiv\text{Σ}n_i\equiv1\)(mod 6)
Vậy \(\text{Σ}n_i^3\)chia 6 dư 1
ta có: \(N=2017^{2016}\)
xét \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên a3-a chia hết cho 6 với mọi a
đặt N=\(n_1+n_2+...+n_k=2017^{2016}\)
\(\Rightarrow S-N=\left(n_1^5+n_2^3+....+n_k^3\right)-\left(n_1+....+n_k\right)=\left(n_1^3-n_1\right)+\left(n_2^3-n_2\right)+....+\left(n_k^3-n_k\right)\)
\(\Rightarrow S-N⋮6\)
=> S và N cùng số dư khi chia cho 6
thấy 2017 chia 6 dư 1
20172016 chia 6 dư 1 => N chia 6 dư 1
=> S chia 6 dư 1