K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

khó quá

mà đây là bài lớp 8 mà bạn

11 tháng 7 2018

lớp 9 cũng có bạn ạ.

17 tháng 7 2018

thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!

17 tháng 1 2021

thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!

NV
9 tháng 12 2018

\(VT=\dfrac{\left(\dfrac{1}{z}\right)^2}{\dfrac{1}{x}+\dfrac{1}{y}}+\dfrac{\left(\dfrac{1}{x}\right)^2}{\dfrac{1}{y}+\dfrac{1}{z}}+\dfrac{\left(\dfrac{1}{y}\right)^2}{\dfrac{1}{x}+\dfrac{1}{z}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Dâu "=" xảy ra khi \(x=y=z\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

Lời giải:

Ta thấy: \(xy+yz+xz=1\)

\(\Rightarrow \left\{\begin{matrix} 1+y^2=xy+yz+xz+y^2=(y+z)(y+x)\\ 1+x^2=xy+yz+xz+x^2=(x+y)(x+z)\\ 1+z^2=xy+yz+xz+z^2=(z+x)(z+y)\end{matrix}\right.\)

Do đó:

\(x\sqrt{\frac{(y^2+1)(z^2+1)}{1+x^2}}=x\sqrt{\frac{(y+x)(y+z)(z+x)(z+y)}{(x+y)(x+z)}}=x\sqrt{(y+z)^2}=x(y+z)\)

Hoàn toàn tt:

\(y\sqrt{\frac{(x^2+1)(z^2+1)}{y^2+1}}=y(x+z)\)

\(z\sqrt{\frac{(x^2+1)(y^2+1)}{z^2+1}}=z(x+y)\)

Cộng theo vế:

\(S=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2\)

17 tháng 1 2021

Lời giải:

Ta thấy: xy+yz+xz=1

⇒⎧⎪⎨⎪⎩1+y2=xy+yz+xz+y2=(y+z)(y+x)1+x2=xy+yz+xz+x2=(x+y)(x+z)1+z2=xy+yz+xz+z2=(z+x)(z+y)

Do đó:

x√(y2+1)(z2+1)1+x2=x√(y+x)(y+z)(z+x)(z+y)(x+y)(x+z)=x√(y+z)2=x(y+z)

Hoàn toàn tt:

y√(x2+1)(z2+1)y2+1=y(x+z) 

z√(x2+1)(y2+1)z2+1=z(x+y)

Cộng theo vế:

S=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2

14 tháng 5 2017

1

16 tháng 5 2017

câu này thím lm chưa

8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé