Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(y=\frac{m}{m+79}=\frac{m+79-79}{m+79}=\frac{m+79}{m+79}-\frac{79}{m+79}=1-\frac{79}{m+79}\)
Để y nguyên thì \(1-\frac{79}{m+79}\in Z\Leftrightarrow\frac{79}{m+79}\in Z\Rightarrow m+79\inƯ\left(79\right)\)
Ta có bảng sau:
m+79 | -1 | 1 | 79 | -79 |
m | -80 | -78 | 0 | -158 |
Vậy \(m\in\left\{-158;-80;-78;0\right\}\)
Đối vớ bài dạng này em cần tìm cách tách trên tử để rút gọn ra phân thức cuối cùng chỉ chứa hằng số trên tử. Chúc em học tốt :)
Đề bài có cho thiếu điều kiện của m là số nguyên không bạn? Tại vì cách này chỉ áp dụng được với \(m\in Z\).
Ta có:
\(y\in Z\Leftrightarrow\dfrac{m}{m+79}\in Z\)
\(\Leftrightarrow\dfrac{m+79-79}{m+79}\in Z\)
\(\Leftrightarrow\dfrac{79}{m+79}\in Z\)
\(\Leftrightarrow m+79\inƯ\left(79\right)=\left\{-79;-1;1;79\right\}\)
\(\Leftrightarrow m\in\left\{-158;-80;-78;0\right\}\)
Vậy \(m\in\left\{-158;-80;-78;0\right\}\)
\(y=\frac{m-3}{m+2}=\frac{\left(m+2\right)-5}{m+2}=1-\frac{5}{m+2}\)
Vậy để y là số nguyên thì \(m+2\inƯ\left(5\right)\)
Mà Ư(5)={1;-1;5;-5}
=>m+2={1;-1;5;-5}
+) m+2=1 <=> m=-1
+)m+2=-1 <=> m=-3
+)m+2=5 <=> m=3
+) m+2 =-5 <=> m=-7
Vậy m={-7;-3;1;3}
để \(y=\frac{m-3}{m+2}\) là số nguyên thì m-3 chia hết cho m+2
ta có:(m-3)-(m+2) chia hết cho m+2
-1 chia hết cho m+2
\(\Rightarrow\)m -3 \(⋮\)m+ 2
m + 2 - 5\(⋮\)m+ 2
m + 2 \(⋮\)m+2
5\(⋮\)m+2
\(\Rightarrow\)Ư (m + 2) = (1, -1, 5, -5)
m+2 =1 m + 2 =-1 m + 2=5 m+ 2 =-5
m=-1 (loại) m= -3 (loại) m=3 m=-7 (loại)
Vậy m= 5 thì y dương.
Chỉ có m=0 thì y mới là số nguyên