K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

Ta có : 

\(A=\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}\)

\(\Rightarrow A=\frac{1+z+x^2}{1+y+z^2}+\frac{1+x+y^2}{1+z+x^2}+\frac{1+y+z^2}{1+x+y^2}\)

\(-\left(\frac{z}{1+y+z^2}+\frac{x}{1+z+x^2}+\frac{y}{1+x+y^2}\right)\)

\(\Rightarrow A\ge3\sqrt[3]{\frac{1+z+x^2}{1+y+z^2}.\frac{1+x+y^2}{1+z+x^2}.\frac{1+y+z^2}{1+x+y^2}}\)

\(-\left(\frac{z}{1+y+z^2}+\frac{x}{1+z+x^2}+\frac{y}{1+x+y^2}\right)\)

\(\Rightarrow A\ge3-\left(\frac{z}{1+y+z^2}+\frac{x}{1+z+x^2}+\frac{y}{1+x+y^2}\right)\)

\(\Rightarrow A\ge3-\left(\frac{z}{y+2z}+\frac{x}{z+2x}+\frac{y}{x+2y}\right)\)

\(\Rightarrow A\ge3-\left(\frac{1}{2}-\frac{y}{2\left(y+2z\right)}+\frac{1}{2}-\frac{z}{2\left(z+2x\right)}+\frac{1}{2}-\frac{x}{2\left(x+2y\right)}\right)\)

\(\Rightarrow A\ge3-\frac{3}{2}+\frac{1}{2}\left(\frac{y}{y+2z}+\frac{z}{z+2x}+\frac{x}{x+2y}\right)\)

\(\Rightarrow A\ge\frac{3}{2}+\frac{1}{2}\left(\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xz}+\frac{x^2}{x^2+2xy}\right)\)

\(\Rightarrow A\ge\frac{3}{2}+\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{y^2+2yz+z^2+2xz+x^2+2xy}\right)\)

\(\Rightarrow A\ge\frac{3}{2}+\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}\right)\)

\(\Rightarrow A\ge2\)

Dấu " = " xảy ra khi \(x=y=z=1\)

2 tháng 4 2020

Ta có : 

\(\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}\)

\(\Rightarrow A=\frac{1+z+x^2}{1+y+z^2}+\frac{1+x+y^2}{1+z+x^2}+\frac{1+y+z^2}{1+x+y^2}\)

\(-\left(\frac{z}{1+y+z^2}+\frac{x}{1+z+x^2}+\frac{y}{1+x+y^2}\right)\)

\(\Rightarrow A\ge3\sqrt[3]{\frac{1+z+x^2}{1+y+z^2}.\frac{1+x+y^2}{1+z+x^2}.\frac{1+y+z^2}{1+x+y^2}}\)

\(-\left(\frac{z}{1+y+z^2}+\frac{x}{1+z+x^2}+\frac{y}{1+x+y^2}\right)\)

\(\Rightarrow A\ge3-\left(\frac{z}{1+y+z^2}+\frac{x}{1+z+x^2}+\frac{y}{1+x+y^2}\right)\)

\(\Rightarrow A\ge3-\left(\frac{z}{y+2z}+\frac{x}{z+2x}+\frac{y}{x+2y}\right)\)

\(\Rightarrow A\ge3-\left(\frac{1}{2}-\frac{y}{2\left(y+2z\right)}+\frac{1}{2}-\frac{z}{2\left(z+2x\right)}+\frac{1}{2}-\frac{x}{2\left(x+2y\right)}\right)\)

\(\Rightarrow A\ge3-\frac{3}{2}+\frac{1}{2}\left(\frac{y}{y+2z}+\frac{z}{z+2x}+\frac{x}{x+2y}\right)\)

\(\Rightarrow A\ge\frac{3}{2}+\frac{1}{2}\left(\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xz}+\frac{x^2}{x^2+2xy}\right)\)

\(\Rightarrow A\ge\frac{3}{2}+\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{y^2+2yz+z^2+2xz+x^2+2xy}\right)\)

\(\Rightarrow A\ge\frac{3}{2}+\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}\right)\)

\(\Rightarrow A\ge2\)

Dấu " = " xảy ra khi x=y=z=1 

18 tháng 9 2016

Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)

\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)

\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)

\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)

\(\Rightarrow T\ge1\)

Bài 2:

[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam

NV
2 tháng 11 2020

Đặt vế trái là P

Ta có: \(P\ge\frac{x^2+1}{1+\frac{y^2+1}{2}+z^2}+\frac{y^2+1}{1+\frac{z^2+1}{2}+x^2}+\frac{z^2+1}{1+\frac{x^2+1}{2}+y^2}\)

Đặt \(\left(x^2+1;y^2+1;z^2+1\right)=\left(a;b;c\right)\Rightarrow a;b;c\ge1\)

\(P\ge\frac{2a}{b+2c}+\frac{2b}{c+2a}+\frac{2c}{a+2b}=2\left(\frac{a^2}{ab+2ac}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\right)\)

\(P\ge\frac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{6\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

30 tháng 4 2019

p= 1+2 : 1 + 3 x 2 +1 + 2 : 1 + 3 + 4 + 1 +2 : 1 + 2 + 3

=  30

8 tháng 2 2019

1,theo giả thiết => \(x^2+y^2+z^2=x+y+z\)

mà \(3\left(x^2+y^2+z^2\right)>=\left(x+y+z\right)^2\)(bunhiacopxki)

=>\(x+y+z=< 3\)

ta có:\(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}>=\frac{9}{x+y+z+6}=1\)(cauchy  schwarz)