Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{3}{4}\)
\(=\frac{x^3}{1+z+y+yz}+\frac{y^3}{1+x+z+xz}+\frac{z^3}{1+y+x+xy}\)
\(=\frac{x^3}{1+x+y+2y}\ge\frac{x}{2}\Rightarrow TổngBPT\ge\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\ge\frac{2}{3}\left(đpcm\right)\)
(Không chắc à nha)
Ta có : \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)
\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}\ge\frac{6x-y-z-2}{8}\left(1\right)\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(1+z\right)\left(1+x\right)}\ge\frac{6y-z-x-2}{8}\left(2\right)\\\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{6z-x-y-2}{8}\left(3\right)\end{cases}}\)
Từ (1) , (2) và (3)
\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)
\(\ge\frac{6x-y-z-2}{8}+\frac{6y-z-x-2}{8}+\frac{6z-x-y-2}{8}\)
\(=\frac{1}{2}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Chúc bạn học tốt !!!
Ta có : \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)
\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}\ge\frac{6x-y-z-2}{8}\left(1\right)\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(1+z\right)\left(1+x\right)}\ge\frac{6y-z-x-2}{8}\left(2\right)\\\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{6z-x-y-2}{8}\left(3\right)\end{cases}}\)
Từ (1) , (2) , (3)
\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)
\(\ge\frac{6x-y-z-2}{8}+\frac{6y-z-x-2}{8}+\frac{6z-x-y-2}{8}\)
\(=\frac{1}{2}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Chúc bạn học tốt !!!
Áp dụng bđt AM-GM ta có:
\(\hept{\begin{cases}\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge3\sqrt[3]{\frac{x^3}{\left(1+y\right)\left(1+z\right)}.\frac{1+y}{8}.\frac{1+z}{8}}=\frac{3x}{4}\left(1\right)\\\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{1+z}{8}+\frac{1+x}{8}\ge3\sqrt[3]{\frac{y^3}{\left(1+z\right)\left(1+x\right)}.\frac{1+z}{8}.\frac{1+x}{8}}=\frac{3y}{4}\left(2\right)\\\frac{z^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge3\sqrt[3]{\frac{z^3}{\left(1+x\right)\left(1+y\right)}.\frac{1+x}{8}.\frac{1+y}{8}}=\frac{3z}{4}\left(3\right)\end{cases}}\)
Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được:
\(P+\frac{3+x+y+z}{4}\ge\frac{3\left(x+y+z\right)}{4}\)
\(\Leftrightarrow P\ge\frac{3\left(x+y+z\right)}{4}-\frac{3+x+y+z}{4}\)
\(\Leftrightarrow P\ge\frac{2\left(x+y+z\right)-3}{4}\left(1\right)\)
Áp dụng bdt AM-GM ta có:
\(x+y+z\ge3\sqrt[3]{xyz}=3\)Thay vào (1) ta được:
\(P\ge\frac{2.3-3}{4}\)
\(\Rightarrow P\ge\frac{3}{4}\)Dấu"="xảy ra \(\Leftrightarrow x=y=z\)
Áp dụng bất đẳng thức AM-GM và sử dụng giả thiết x+y+z=1 ta có :
\(1+\frac{1}{x}=\frac{x+1}{x}=\frac{x+x+y+z}{x}\ge\frac{4\sqrt[4]{x^2yz}}{x}\)
CMTT ta có : \(1+\frac{1}{y}\ge\frac{4\sqrt[4]{xy^2x}}{y}\); \(1+\frac{1}{z}\ge\frac{4\sqrt[4]{xyz^2}}{z}\)
Nhân vế với vế các bđt trên ta được đpcm
Đẳng thức xảy ra <=> x=y=z=1/3
Sử dụng giả thiết x+y+z=1x+y+z=1 và áp dụng bất đẳng thức Cô si cho bốn số dương ta có
1+\frac{1}{x}=\frac{x+1}{x}=\frac{x+x+y+z}{x}\ge\frac{4\sqrt[4]{x^2yz}}{x}1+x1=xx+1=xx+x+y+z≥x44x2yz
Tương tự 1+\frac{1}{y}\ge\frac{4\sqrt[4]{xy^2z}}{y}1+y1≥y44xy2z và 1+\frac{1}{z}\ge\frac{4\sqrt[4]{xyz^2}}{z}1+z1≥z44xyz2.
Nhân theo vế ba bất đẳng thức vừa nhận được suy ra đpcm.
Đẳng thức xảy ra khi và chỉ khi x=y=z=\frac{1}{3}x=y=z=31.
hùi nãy mem nào k sai cho t T_T t buồn
\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)
\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)
\(=\frac{27}{8}-\frac{3}{8}+6=9\)
\(\Rightarrow\)\(VT\ge9\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)
Chúc bạn học tốt ~
Ta có: \(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{1+y}{8}+\dfrac{1+z}{8}\ge\dfrac{3x}{4}\)
\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}\ge\dfrac{6x-y-z-2}{8}\left(1\right)\)
Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}\ge\dfrac{6y-z-x-2}{8}\left(2\right)\\\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{6z-x-y-2}{8}\left(3\right)\end{matrix}\right.\)
Từ (1), (2), (3)
\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{6x-y-z-2}{8}+\dfrac{6y-z-x-2}{8}+\dfrac{6z-x-y-2}{8}\)
\(=\dfrac{1}{2}\left(x+y+z\right)-\dfrac{3}{4}\ge\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)
\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)
Chúc bạn học tốt ~
a) Ta có : \(1+x^2=xy+yz+zx+x^2=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(z+x\right)\)
b) \(\Sigma\left(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\right)=\Sigma\left(x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right).\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\right)\)
\(=\Sigma\left(x\left(y+z\right)\right)=xy+xz+xy+yz+zx+zy=2\left(xy+yz+zx\right)=2\)
Em thử ạ!Em không chắc đâu.Hơi quá sức em rồi
Ta có: \(VT=\Sigma\frac{x^3}{z+y+yz+1}=\Sigma\frac{x^3}{z+y+\frac{1}{x}+1}\)
\(=\Sigma\frac{x^4}{xz+xy+1+x}=\frac{x^4}{xy+xz+x+1}+\frac{y^4}{yz+xy+y+1}+\frac{z^4}{zx+yz+z+1}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel,suy ra:
\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)+2\left(xy+yz+zx\right)+3}\)
\(\ge\frac{\left(\frac{1}{3}\left(x+y+z\right)^2\right)^2}{\left(x+y+z\right)+\frac{2}{3}\left(x+y+z\right)^2+3}\) (áp dụng BĐT \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3};ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))
Đặt \(t=x+y+z\ge3\sqrt{xyz}=3\) Dấu "=" xảy ra khi x = y = z
Ta cần chứng minh: \(\frac{\frac{t^4}{9}}{\frac{2}{3}t^2+t+3}\ge\frac{3}{4}\Leftrightarrow\frac{t^4}{9\left(\frac{2}{3}t^2+t+3\right)}=\frac{t^4}{6t^2+9t+27}\ge\frac{3}{4}\)(\(t\ge3\))
Thật vậy,BĐT tương đương với: \(4t^4\ge18t^2+27t+81\)
\(\Leftrightarrow3t^4-18t^2-27t+t^4-81\ge0\)
Ta có: \(VT\ge3t^4-18t^2-27t+3^4-81\)
\(=3t^4-18t^2-27t\).Cần chứng minh\(3t^4-18t^2-27t\ge0\Leftrightarrow3t^4\ge18t^2+27t\)
Thật vậy,chia hai vế cho \(t\ge3\),ta cần chứng minh \(3t^3\ge18t+27\Leftrightarrow3t^3-18t-27\ge0\)
\(\Leftrightarrow3\left(t^3-27\right)-18\left(t-3\right)\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+27\right)-18\left(t-3\right)\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+9\right)\ge0\)
BĐT hiển nhiên đúng,do \(t\ge3\) và \(3t^2+9t+9=3\left(t+\frac{3}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)
Dấu "=" xảy ra khi t = 3 tức là \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)
Chứng minh hoàn tất
Em sửa chút cho bài làm ngắn gọn hơn.
Khúc chứng minh: \(4t^4\ge18t^2+27t+81\)
\(\Leftrightarrow4t^4-18t^2-27t-81\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(4t^3+12t^2+18t+27\right)\ge0\)
BĐT hiển nhiên đúng do \(t\ge3\Rightarrow\hept{\begin{cases}t-3\ge0\\4t^3+12t^2+18t+27>0\end{cases}}\)
Còn khúc sau y chang :P Lúc làm rối quá nên không nghĩ ra ạ!
Sử dụng bất đẳng thức Cô si cho hai số dương ta được
a+b\ge2\sqrt{ab}a+b≥2ab ; b+c\ge2\sqrt{bc}b+c≥2bc ; c+a\ge2\sqrt{ca}c+a≥2ca
Nhân theo vế ba bất đẳng thức này ta được đpcm.
áp dụng bđt cô si ta được
1+x ≥ 2x , 1+y ≥ 2y, 1+z ≥ 2z
Nhân theo vế ba bất đẳng thức này ta được
1+x)(1+y)(1+z)≥ \(8\sqrt{xyz}\)
Sử dụng giả thiết xyz=1xyz=1 ta có đpcm. Đẳng thức xảy ra khi và chỉ khi x=y=zx=y=z.