K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2016

Ta có: 

\(\left(x-y\right)^2=\left(x+y\right)^2-4xy\)

và  \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)

Do đó:

\(A=9\left[\left(x+y\right)^2-4xy\right]-2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\)

\(A=9\left(x+y\right)^2-36xy-2\left(x+y\right)^3+6xy\left(x+y\right)\)

Với   \(x+y=6\) , ta được:  \(A=9.36-36xy-2.216+36xy=324-432=-108\)

19 tháng 1 2016

\(A=9\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(A=\left(x+y\right)\left[9\left(x-y\right)-2\left(x^2-xy+y^2\right)\right]\)

\(A=\left(x+y\right)\left(9x-9y-2x^2+2xy-2y^2\right)\)

chỉ cho x+y = 6 sao tính ra đc gtbt bạn ơi?

9 tháng 3 2016

Bài này có hai giá trị,  \(P=-1\)  hoặc  \(P=\frac{1}{8}\)

10 tháng 3 2016

x^3 + y^3 + z^3 = 3xyz
<=> (x + y + z)(x^2 + y^2 + z^2 -xy -yz - zx) = 0
vì x+y+z khác 0 => x^2 + y^2 + z^2 -xy -yz - zx = 0
nhân 2 vế cho 2 => (x - y)^2 + (y - z)^2 + (z -x)^2 = 0
=> x = y = z
thay vào P ta dc: P= xxx/(2x.2x.2x) = x^3/8x^3 = 1/8

2 tháng 3 2020

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

16 tháng 3 2020

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D

19 tháng 10 2018

a, A = (x-1)(x+6) (x+2)(x+3)

= (x^2 + 5x -6 ) (x^2 + 5x + 6)

Đặt t = x^2 +5x 

A= (t-6)(t+6)

= t^2 - 36

GTNN của A là -36 khi và ck t= 0

<=> x^2 +5x = 0

<=> x=0 hoặc x=-5

Vậy...