Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy : \(\sqrt{\left(y-1\right).1}\le\frac{y-1+1}{2}=\frac{y}{2}\Rightarrow x\sqrt{y-1}\le\frac{xy}{2}\)
\(\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\Rightarrow y\sqrt{x-1}\le\frac{xy}{2}\)
Cộng hai BĐT trên theo vế ta có đpcm
Lời giải:
Áp dụng BĐT Bunhiacopxky ta có:
$(x\sqrt{y-1}+y\sqrt{x-1})^2=(\sqrt{x}.\sqrt{xy-x}+\sqrt{y}.\sqrt{yx-y})^2$
$\leq (x+y)(xy-x+xy-y)\leq \left(\frac{x+y+xy-x+xy-y}{2}\right)^2=(xy)^2$
$\Rightarrow x\sqrt{y-1}+y\sqrt{x-1}\leq xy$ (đpcm)
Dấu "=" xảy ra khi $x=y=2$
\(x.1.\sqrt{y-1}+y.1.\sqrt{x-1}\le\frac{x}{2}\left(1+y-1\right)+\frac{y}{2}\left(1+x-1\right)=xy\)
Dấu "=" xảy ra khi \(x=y=2\)
Áp dụng cô si
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\\\frac{1}{c}+\frac{1}{b}\ge2\sqrt{\frac{1}{cb}}\\\frac{1}{a}+\frac{1}{c}\ge2\sqrt{\frac{1}{ac}}\end{cases}}\)\(\Rightarrow\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\)
\("="\Leftrightarrow a=b=c=0\)
\(\hept{\begin{cases}\sqrt{x}\le\frac{x+1}{2}\\\sqrt{y-1}\le\frac{y-1+1}{2}\\\sqrt{z-2}\le\frac{z-2+1}{2}\end{cases}}\)\(\Rightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+1+y-1+1+z-2+1}{2}\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+y+z}{2}\)
\("="\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
Sửa ĐK của c) : a, b, c > 0
Áp dụng bất đẳng thức Cauchy ta có :
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)
\(\frac{1}{b}+\frac{1}{c}\ge2\sqrt{\frac{1}{bc}}=\frac{2}{\sqrt{bc}}\)
\(\frac{1}{c}+\frac{1}{a}\ge2\sqrt{\frac{1}{ca}}=\frac{2}{\sqrt{ca}}\)
Cộng các vế tương ứng
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ab}}+\frac{2}{\sqrt{bc}}+\frac{2}{\sqrt{ca}}\)
=> \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
=> đpcm
Đẳng thức xảy ra khi a = b = c
\(\Leftrightarrow\frac{4}{x\left(y+z\right)}\ge1\)
mà \(x\left(y+z\right)\le\frac{\left(x+y+z\right)^2}{4}\)
\(\Rightarrow\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=\frac{16}{\left(x+y+z\right)^2}=\frac{16}{16}=1\left(đpcm\right)\)
Áp dụng bất đẳng thức Cô si ta có
\(\sqrt{y-1}=\sqrt{\left(y-1\right).1}\le\frac{y-1+1}{2}=\frac{y}{2}\)
=>\(x\sqrt{y-1}\le\frac{xy}{2}\)
Áp dụng BĐT cô si ta có
\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)
=>\(y\sqrt{x-1}+x\sqrt{y-1}\le\frac{xy}{2}+\frac{xy}{2}=xy\)
Dấu ''='' xảy ra <=>x=y=1