Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(x^4+y^4+z^4=3\). Tìm MAX của \(A=x^2\left(x+y\right)+y^2\left(y+z\right)+z^2\left(z+x\right)\)
Ta có:
\(3x^4+1=x^4+x^4+x^4+1\ge4\sqrt[4]{x^4.x^4.x^4.1}=4x^3\)
Tương tự: \(3y^4+1\ge4y^3\) ; \(3z^4+1\ge4z^3\)
=> \(3\left(x^4+y^4+z^4\right)+3\ge4\left(x^3+y^3+z^3\right)\) (1)
Thay vào:
\(A=x^2\left(x+y\right)+y^2\left(y+z\right)+z^2\left(z+x\right)\)
\(A=x^3+x^2y+y^3+y^2z+z^3+z^2x\)
\(A=x^3+y^3+z^3+\left(x^2y+y^2z+z^2x\right)\)
\(\le x^3+y^3+z^3+\left(\frac{x^3+x^3+y^3+y^3+y^3+z^3+z^3+z^3+x^3}{3}\right)\)
\(=2\left(x^3+y^3+z^3\right)\)
\(=\frac{1}{2}\left[4\left(x^3+y^3+z^3\right)\right]\le\frac{1}{2}\left[3\left(x^4+y^4+z^4\right)+3\right]\)
\(=\frac{1}{2}\left[3.3+3\right]=\frac{12}{2}=6\)
Dấu "=" xảy ra khi: \(x=y=z=1\)
Vậy Max(A) = 6 khi x = y = z = 1
Gọi cái biểu thức đó là P nha
Trước tiên chứng minh:
\(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}-\left(\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\right)=0\)
\(\Leftrightarrow\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\Leftrightarrow x-y+y-z+z-x=0\)( đúng )
Giờ ta quay lại bài toán ban đầu
Ta có:
\(\Leftrightarrow2P=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{x^2+y^2}{2\left(x+y\right)}+\frac{y^2+z^2}{2\left(y+z\right)}+\frac{z^2+x^2}{2\left(z+x\right)}\)
\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)
\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)
\(\Rightarrow P\ge\frac{1}{4}\)
Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)
Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)
Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*
Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)
Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)
Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))
\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)
\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2
(x−y+z)2+(z−y)2+2(x−y+z)(y−z)(x−y+z)2+(z−y)2+2(x−y+z)(y−z)
=(x−y+z)2+(z−y)2+(x−y+z)(y−z)+(x−y+z)(y−z)=(x−y+z)2+(z−y)2+(x−y+z)(y−z)+(x−y+z)(y−z)
=(x−y+z)2+(x−y+z)(y−z)+(z−y)2+(x−y+z)(y−z)=(x−y+z)2+(x−y+z)(y−z)+(z−y)2+(x−y+z)(y−z)
=(x−y+z)2+(x−y+z)(y−z)+(z−y)2−(x−y+z)(z−y)=(x−y+z)2+(x−y+z)(y−z)+(z−y)2−(x−y+z)(z−y)
=(x−y+z)(x−y+y+z−z)+(z−y)[z−y−(x−y+z)]=(x−y+z)(x−y+y+z−z)+(z−y)[z−y−(x−y+z)]
=(x−y+z)x+(z−y)(z−y−x+y−z)=(x−y+z)x+(z−y)(z−y−x+y−z)
=x2−xy+xz+(z−y)(−x)=x2−xy+xz+(z−y)(−x)
=x2−xy+xz−xz+xy=x2−xy+xz−xz+xy
=x2
\(x;y;z\rightarrow q;h;p\)
\(=\left(q^2+h^2+p^2\right)\left(q^2+h^2+p^2+2qh+2hp+2qp\right)+\left(qh+hp+pq\right)^2\)
\(Dat:\hept{\begin{cases}q^2+h^2+p^2=f\\qh+hp+qp=g\end{cases}}\Rightarrow\left(p^2+h^2+q^2\right)\left(p+q+h\right)^2+\left(qh+pq+ph\right)^2\)
\(=f\left(f+2g\right)+g^2=f^2+2fg+g^2=\left(f+g\right)^2=\left(q^2+h^2+p^2+qh+hp+pq\right)^2\)
shitbo Cho đệ sửa lại bài SP chứ bài SP dài quá ạ:p
\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2+2xy+yz+zx\right)+\left(xy+yz+zx\right)^2\)
Đặt \(x^2+y^2+z^2=a;xy+yz+zx=b\)
\(\Rightarrow a\left(a+2b\right)+b^2=a^2+2ab+b^2=\left(a+b\right)^2=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)