Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có⎪⎨⎪⎩ˆAOD+ˆCOD=90 độ (=ˆAOC)ˆBOC+ˆCOD=90 độ (=ˆBOD)
⇒ˆAOD=ˆBOC
b) Ta có: ⎧⎪⎨⎪⎩ˆAOD+ˆCOD=90 độ (=ˆAOC)ˆBOC+ˆCOD=900 độ (=ˆBOD)
⇒ˆAOD+ˆBOC+ˆCOD+ˆCOD=180 độ
Mà: ˆAOD+ˆBOC+ˆCOD=ˆAOB
⇒ˆAOB+ˆCOD=180 độ
a) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}+\widehat{COD}=90^0\left(=\widehat{AOC}\right)\\\widehat{BOC}+\widehat{COD}=90^0\left(=\widehat{BOD}\right)\end{matrix}\right.\)
\(\Rightarrow\widehat{AOD}=\widehat{BOC}\)
b) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}+\widehat{COD}=90^0\left(=\widehat{AOC}\right)\\\widehat{BOC}+\widehat{COD}=90^0\left(=\widehat{BOD}\right)\end{matrix}\right.\)
\(\Rightarrow\widehat{AOD}+\widehat{BOC}+\widehat{COD}+\widehat{COD}=180^0\)
Mà: \(\widehat{AOD}+\widehat{BOC}+\widehat{COD}=\widehat{AOB}\)
\(\Rightarrow\widehat{AOB}+\widehat{COD}=180^0\)
mình sửa bài 1. bạn ghi đề sai " ác " quá
1. cho góc \(\widehat{xOy}\)và tia Oz nằm trong góc đó sao cho \(\widehat{xOz}=4.\widehat{yOz}\). tia phân giác Ot của góc xOz sao cho .....
x O y t z
Ta có : \(Ot\perp Oy\)nên \(\widehat{zOt}+\widehat{yOz}=90^o\)
Mà Ot là phân giác của \(\widehat{xOz}\)nên \(\widehat{zOt}=\frac{1}{2}.\widehat{xOz}\)
\(\Rightarrow\frac{1}{2}.\widehat{xOz}+\widehat{yOz}=90^o\)
Mà \(\widehat{xOz}=4.\widehat{yOz}\)
\(\Rightarrow\frac{1}{2}.4.\widehat{yOz}+\widehat{yOz}=90^o\Rightarrow3.\widehat{yOz}=90^o\Rightarrow\widehat{yOz}=30^o\)
Do đó : \(\widehat{xOy}=\widehat{xOz}+\widehat{yOz}=4.\widehat{yOz}+\widehat{yOz}=5.\widehat{yOz}=150^o\)
Vì các tia ��OC và ��OD ở trong góc ���^AOB nên:
���^=���^−���^=90∘−���^AOD=AOC−COD=90∘−COD (1)
���^=���^−���^=90∘−���^BOC=BOD−COD=90∘−COD (2)
Từ (1) và (2), suy ra: ���^=���^AOD=BOC.
b) Ta có
���^+���^=(���^+���^)+���^=���^+���^+���^=���^+���^=90∘+90∘=180∘AOB+COD=(AOC+BOC)+COD=AOC+BOC+COD=AOC+BOD=90∘+90∘=180∘
c) Từ giả thiết, ta có: ���^=2⋅���^AOD=2⋅xOD.
Mà ���^=���^+���^+���^=2⋅���^+���^=���^+���^=���^=90∘xOy=xOD+DOC+COy=2⋅xOD+DOC=AOD+DOC=AOC=90∘.
Vậy ��⊥��Ox⊥Oy.
mik nhớ là. hai góc kề bù thì thường là 180 độ, s lại là 160 đọ nhỉ, sai đề
Vì Ox\(\perp\)OB
=> xOA + AOB = 90°
Vì Oy\(\perp\)OA
=> yOB + AOB = 90°
=> xOA = yOB ( cùng phụ với AOB )
b) Vì Ox' là tia đối Ox
Mà Ox \(\perp\)OB
=> OB \(\perp\)Ox'
Mà x'Oy + yOB = 90°
=> x'Oy = 90° - 60° =30°
120 y x m y' m d c O
a) Ta có: \(\widehat{xOy}=120^o\)
có Om là tia phân giác
=> \(\widehat{mOy}=\widehat{mOx}=120^o:2=60^o\)
Oy' là tia đối tia Oy
=> \(\widehat{yOy'}=180^o\)
=> \(\widehat{xOy'}=\widehat{yOy'}-\widehat{yOx}=180^o-120^o=60^o\)
=> \(\widehat{xOy'}=\widehat{xOm}=60^o\)
Mặt khác Ox nằm giữa hai tia Om, Oy'
=> Õx là phân giác góc y'Om
b) Ta có: Od nằm phóa ngoài góc xOy
Oy' nằm phía ngoài góc xOy
Mà \(\widehat{xOy'}=60^o< 90^o=\widehat{xOd}\)
=> Oy' nằm giữa hai tia Ox, Od
c) \(\widehat{mOc}=\widehat{mOy}+\widehat{yOc}=60^o+90^o=150^o\)
d) Ta có: On là phân giác góc dOc
mà \(\widehat{dOc}=360^o-\widehat{xOy}-\widehat{xOd}-\widehat{yOc}=60^o\)
=>\(\widehat{dOn}=\widehat{nOc}=60^o:2=30^o\)
=> \(\widehat{mOn}=\widehat{mOc}+\widehat{cOn}=150^O+30^O=180^O\)
Đề sai nhiều quá
A A' B B' O C D 45
A) Ta có \(OC\perp OA=90^O\)
Mà OB' là tia phân giác góc A'OC
=> \(\widehat{A'OB'}=\frac{90}{2}=45^O\) \(=\widehat{AOB}\)
Mà OA là OA' nằm trên cùng 1 đường thẳng
=> AOB và A'OB' là 2 góc đối đỉnh
b) \(\widehat{DOA}\Leftrightarrow\widehat{AOD}=90^O\)
2.
O a b c d
\(Oc\perp Od\Rightarrow\widehat{cOd}+\widehat{aOd}=90^o\)
\(Od\perp Ob\Rightarrow\widehat{bOc}+\widehat{cOd}=90^o\)
suy ra \(\widehat{aOd}=\widehat{bOc}\)( cùng phụ với \(\widehat{cOd}\))
b) \(\widehat{aOb}+\widehat{cOd}=\left(\widehat{aOd}+\widehat{cOd}+\widehat{bOc}\right)+\widehat{cOd}=\left(\widehat{aOd}+\widehat{cOd}\right)+\left(\widehat{bOc}+\widehat{cOd}\right)\)
\(=90^o+90^o=180^o\)