K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{AOB}=\dfrac{7}{8}\cdot160^0=140^0\)

\(\widehat{BOC}=\dfrac{140^0}{7}=20^0\)

b: \(\widehat{AOD}=160^0-90^0=70^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia OA, ta có: \(\widehat{AOD}< \widehat{AOB}\)

nên tia OD nằm giữa hai tia OA và OB

mà \(\widehat{AOD}=\dfrac{1}{2}\widehat{AOB}\)

nên OD là tia phân giác của góc AOB

mik nhớ là. hai góc kề bù thì thường là 180 độ, s lại là 160 đọ nhỉ, sai đề

25 tháng 11 2018

đây là kề ko phải bù . bạn nên nhớ lại

27 tháng 10 2016

ta co AOB+BOC=160(1)

Va AOB-BOC=100(2)

Cong (1) va (2) ta co

(AOB+BOC)+(AOB-BOC)=160+100

2AOB=260

AOB=130

Lai co AOB+BOC=160

Hay 130+BOC=160

BOC=30

 

 

27 tháng 10 2016

C O A B D C'

18 tháng 9 2016

ta có: AOB+BOC=160O

→AOB+(AOC+1000)= 160O+1000=2600 

HAY 2AOB=2600

→AOB=1300

BOC=300

B,  vi tia OD thuoc goc AOB →OB nam giua OC VA OD

vi BOC=30MA DOC= 900

→OB ko phai la tia phan giac cua BOC

c,

18 tháng 9 2016

xin loi nham phan c

 

a: \(\widehat{AOB}=\dfrac{\left(160^0+120^0\right)}{2}=140^0\)

=>\(\widehat{BOC}=20^0\)

b: \(\widehat{AOD}=160^0-90^0=70^0\)

\(\widehat{BOD}=90^0-20^0=70^0\)

Do đó: \(\widehat{AOD}=\widehat{BOD}\)

hay OD là tia phân giác của góc AOB

25 tháng 8 2020

a. Ta có⎪⎨⎪⎩ˆAOD+ˆCOD=90 độ (=ˆAOC)ˆBOC+ˆCOD=90 độ (=ˆBOD)

⇒ˆAOD=ˆBOC

b) Ta có: ⎧⎪⎨⎪⎩ˆAOD+ˆCOD=90 độ (=ˆAOC)ˆBOC+ˆCOD=900 độ (=ˆBOD)

⇒ˆAOD+ˆBOC+ˆCOD+ˆCOD=180 độ

Mà: ˆAOD+ˆBOC+ˆCOD=ˆAOB

⇒ˆAOB+ˆCOD=180 độ

23 tháng 8 2020

a) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}+\widehat{COD}=90^0\left(=\widehat{AOC}\right)\\\widehat{BOC}+\widehat{COD}=90^0\left(=\widehat{BOD}\right)\end{matrix}\right.\)

\(\Rightarrow\widehat{AOD}=\widehat{BOC}\)

b) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}+\widehat{COD}=90^0\left(=\widehat{AOC}\right)\\\widehat{BOC}+\widehat{COD}=90^0\left(=\widehat{BOD}\right)\end{matrix}\right.\)

\(\Rightarrow\widehat{AOD}+\widehat{BOC}+\widehat{COD}+\widehat{COD}=180^0\)

Mà: \(\widehat{AOD}+\widehat{BOC}+\widehat{COD}=\widehat{AOB}\)

\(\Rightarrow\widehat{AOB}+\widehat{COD}=180^0\)