K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 5 2020

\(\left(tanx+cotx\right)^2=m^2\)

\(\Leftrightarrow tan^2x+cot^2x+2=m^2\)

\(\Leftrightarrow tan^2x+cot^2x=m^2-2\)

\(\Rightarrow\left(tan^2x+cot^2x\right)^2=\left(m^2-2\right)^2\)

\(\Leftrightarrow tan^4x+cot^4x+2=m^4-4m^2+4\)

\(\Leftrightarrow tan^4x+cot^4x=m^4-4m^2+2\)

\(\Rightarrow a+b+c+d+e=1+0-4+0+2=-1\)

NV
28 tháng 11 2019

\(\left(tanx-cotx\right)^2=9\Rightarrow tan^2x-2.tanx.cotx+cot^2x=9\)

\(\Rightarrow tan^2x+cot^2x=11\)

\(\left(tanx+cotx\right)^2=tan^2x+cot^2x+2.tanx.cotx=11+2=13\)

\(\Rightarrow tanx+cotx=\pm\sqrt{13}\)

\(tan^4x-cot^4x=\left(tan^2x+cot^2x\right)\left(tan^2x-cot^2x\right)\)

\(=11\left(tanx+cotx\right)\left(tanx-cotx\right)=\pm33\sqrt{13}\)

4 tháng 5 2020

cos đó bạn

AH
Akai Haruma
Giáo viên
4 tháng 5 2020

Lời giải:

a)

\(\cos 2a=\frac{2}{5}\Rightarrow \sin ^22a=1-(\cos 2a)^2=1-(\frac{2}{5})^2=\frac{21}{25}\)

Vì $a\in (0; \frac{\pi}{4})\Rightarrow 2a\in (0; \frac{\pi}{2})$

$\Rightarrow \sin 2a>0\Rightarrow \sin 2a=\frac{\sqrt{21}}{5}$

$\tan 2a=\frac{\sin 2a}{\cos 2a}=\frac{\sqrt{21}}{5.\frac{2}{5}}=\frac{\sqrt{21}}{2}$

$\cot 2a=\frac{1}{\tan 2a}=\frac{2}{\sqrt{21}}$

-------------------------

$\sin 2a=\frac{24}{25}\Rightarrow \cos ^22a=1-(\sin 2a)^2=\frac{49}{625}$

$a\in [\frac{-3}{4}\pi; \frac{-\pi}{2}]\Rightarrow 2a\in [\frac{-3}{2}\pi ; -\pi]\Rightarrow \cos 2a< 0$

$\Rightarrow \cos 2a=\frac{-7}{25}$

$\Rightarrow \tan 2a=\frac{\sin 2a}{\cos 2a}=\frac{24}{25.\frac{-7}{25}}=\frac{-24}{7}$

$\Rightarrow \cot 2a=\frac{-7}{24}$

NV
4 tháng 11 2019

\(A=cot^2x+tan^2x+2-\left(cot^2x+tan^2x-2\right)=4\)

\(B=cos^2x.cot^2x-cot^2x+cos^2x+2\left(sin^2x+cos^2x\right)\)

\(=cot^2x\left(cos^2x-1\right)+cos^2x+2\)

\(=-cot^2x.sin^2x+cos^2x+2\)

\(=-cos^2x+cos^2x+2=2\)

\(C=\left(sin^4x+cos^4x\right)^2+4sin^4x.cos^4x+4sin^2xcos^2x\left(sin^4x+cos^4x\right)+1\)

\(=\left(sin^4x+cos^4x+2sin^2x.cos^2x\right)^2+1\)

\(=\left(sin^2x+cos^2x\right)^4+1\)

\(=1^4+1=2\)

29 tháng 4 2020

\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)

\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)

b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)

=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)

d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)

\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)

=\(\frac{1}{cosx.sinx}=VP\)

e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)

c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)

=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)

Đây nha bạn

NV
5 tháng 5 2020

\(E=\frac{\frac{1}{sin^2x}}{1-\frac{cosx}{sinx}+\frac{cos^2x}{sin^2x}}=\frac{1+cot^2x}{1-cotx+cot^2x}=\frac{1+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{4}}=...\)

\(A=tan^2x+cot^2x=\left(tanx+cotx\right)^2-2=4-2=2\)

\(B=\left(tanx+cotx\right)^3-3tanx.cotx\left(tanx+cotx\right)=2^3-3.1.2=2\)

AH
Akai Haruma
Giáo viên
28 tháng 4 2019

Lời giải:

a)

\(\frac{\cos (a-b)}{\cos (a+b)}=\frac{\cos a\cos b+\sin a\sin b}{\cos a\cos b-\sin a\sin b}=\frac{\frac{\cos a\cos b}{\sin a\sin b}+1}{\frac{\cos a\cos b}{\sin a\sin b}-1}=\frac{\cot a\cot b+1}{\cot a\cot b-1}\)

b)

\(2(\sin ^6a+\cos ^6a)+1=2(\sin ^2a+\cos ^2a)(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)+1\)

\(=2(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)+1\)

\(=3(\sin ^4a+\cos ^4a)-(\sin ^4a+\cos ^4a+2\sin ^2a\cos ^2a)+1\)

\(=3(\sin ^4a+\cos ^4a)-(\sin ^2a+\cos ^2a)^2+1\)

\(=3(\sin ^4a+\cos ^4a)-1^2+1=3(\sin ^4a+\cos ^4a)\)

c)

\(\frac{\tan a-\tan b}{cot b-\cot a}=\frac{\tan a-\tan b}{\frac{1}{\tan b}-\frac{1}{\tan a}}\) (nhớ rằng \(\tan x.\cot x=1\rightarrow \cot x=\frac{1}{\tan x}\) )

\(=\frac{\tan a-\tan b}{\frac{\tan a-\tan b}{\tan a\tan b}}=\tan a\tan b\)

d)

\((\cot x+\tan x)^2-(\cot x-\tan x)^2=(\cot ^2x+\tan ^2x+2\cot x\tan x)-(\cot ^2x-2\cot x\tan x+\tan ^2x)\)

\(=4\cot x\tan x=4.1=4\)

e)

\(\frac{\sin ^3a+\cos ^3a}{\sin a+\cos a}=\frac{(\sin a+\cos a)(\sin ^2a-\sin a\cos a+\cos ^2a)}{\sin a+\cos a}\)

\(=\sin ^2a-\sin a\cos a+\cos ^2a=(\sin ^2a+\cos ^2a)-\sin a\cos a=1-\sin a\cos a\)

Vậy ta có đpcm.

bài 1: Rút gọn: a) A= \(sin^2x+sin^2x.cot^2x\) b) B= \(\left(1-tan^2x\right).cot^2x+1-cot^2x\) c) C= \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\) d) D= \(\dfrac{1-cosx}{sin^2x}-\dfrac{1}{1+cosx}\) e) E= \(cos^2\alpha.\left(sin^2\alpha+1\right)+sin^4\alpha\) f) F= \(\dfrac{\sqrt{2}cos\alpha-2cos\left(\dfrac{\pi}{4}+2\right)}{-\sqrt{2}sin\alpha+2sin\left(\dfrac{\pi}{4}+2\right)}\) g) G= \(\left(tana-tanb\right)cot\left(a-b\right)-tana.tanb\) bài 2: cho các số dương a,b,c có a+b+c=3....
Đọc tiếp

bài 1: Rút gọn:

a) A= \(sin^2x+sin^2x.cot^2x\)

b) B= \(\left(1-tan^2x\right).cot^2x+1-cot^2x\)

c) C= \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\)

d) D= \(\dfrac{1-cosx}{sin^2x}-\dfrac{1}{1+cosx}\)

e) E= \(cos^2\alpha.\left(sin^2\alpha+1\right)+sin^4\alpha\)

f) F= \(\dfrac{\sqrt{2}cos\alpha-2cos\left(\dfrac{\pi}{4}+2\right)}{-\sqrt{2}sin\alpha+2sin\left(\dfrac{\pi}{4}+2\right)}\)

g) G= \(\left(tana-tanb\right)cot\left(a-b\right)-tana.tanb\)

bài 2: cho các số dương a,b,c có a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức

P= \(\dfrac{a\sqrt{a}}{\sqrt{2c+a+b}}+\dfrac{b\sqrt{b}}{\sqrt{2a+b+c}}+\dfrac{c\sqrt{c}}{\sqrt{2b+c+a}}\)

bài 3: cho a,b,c dương sao cho \(a^2+b^2+c^2=3\). Chứng minh rằng: \(\dfrac{a^3b^3}{c}+\dfrac{a^3c^3}{b}+\dfrac{b^3c^3}{a}\ge3abc\)

bài 4: cho các số thực dương a,b,c thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất cảu biểu thức :

P= \(\dfrac{1}{a}+\dfrac{1}{b}-c\)

bài 5: Cho a,b>0, \(3b+b\le1.\) Tìm giá trị nhỏ nhất của P= \(\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)

5
AH
Akai Haruma
Giáo viên
27 tháng 2 2019

Bài 1:

a)

\(\sin ^2x+\sin ^2x\cot^2x=\sin ^2x(1+\cot^2x)=\sin ^2x(1+\frac{\cos ^2x}{\sin ^2x})\)

\(=\sin ^2x.\frac{\sin ^2x+\cos^2x}{\sin ^2x}=\sin ^2x+\cos^2x=1\)

b)

\((1-\tan ^2x)\cot^2x+1-\cot^2x\)

\(=\cot^2x(1-\tan^2x-1)+1=\cot^2x(-\tan ^2x)+1=-(\tan x\cot x)^2+1\)

\(=-1^2+1=0\)

c)

\(\sin ^2x\tan x+\cos^2x\cot x+2\sin x\cos x=\sin ^2x.\frac{\sin x}{\cos x}+\cos ^2x.\frac{\cos x}{\sin x}+2\sin x\cos x\)

\(=\frac{\sin ^3x}{\cos x}+\frac{\cos ^3x}{\sin x}+2\sin x\cos x=\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin x\cos x}=\frac{(\sin ^2x+\cos ^2x)^2}{\sin x\cos x}=\frac{1}{\sin x\cos x}\)

\(=\frac{1}{\frac{\sin 2x}{2}}=\frac{2}{\sin 2x}\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

Bài 2:

Áp dụng BĐT Cauchy Schwarz ta có:

\(P=\frac{a^2}{\sqrt{a(2c+a+b)}}+\frac{b^2}{\sqrt{b(2a+b+c)}}+\frac{c^2}{\sqrt{c(2b+c+a)}}\)

\(\geq \frac{(a+b+c)^2}{\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}}(*)\)

Tiếp tục áp dụng BĐT Cauchy-Schwarz:

\((\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq (a+b+c)(2c+a+b+2a+b+c+2b+c+a)\)

\(\Leftrightarrow (\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)})^2\leq 4(a+b+c)^2\)

\(\Rightarrow \sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+c+a)}\leq 2(a+b+c)(**)\)

Từ \((*); (**)\Rightarrow P\geq \frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}=\frac{3}{2}\)

Vậy \(P_{\min}=\frac{3}{2}\)

Dấu "=" xảy ra khi $a=b=c=1$