K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

mình học toán cảm thấy nhức óc lắm, hoa mắt luôn oho

9 tháng 3 2017

Ta thấy:

1/11<1/4

1/12<1/4

.......

1/20<1/4

Suy ra ta có:

(1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20)<1/4 nhân 2 hay chính là nhỏ hơn 1/2

27 tháng 2 2019

\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)

\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)

\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)

\(=\frac{1}{3}+\frac{1}{4}\)

\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

Bài làm

Ta có: 

\(\frac{1}{11}>\frac{1}{20}\)\(\frac{1}{12}>\frac{1}{20}\)\(\frac{1}{13}>\frac{1}{20}\)\(\frac{1}{14}>\frac{1}{20}\)\(\frac{1}{15}>\frac{1}{20}\)\(\frac{1}{16}>\frac{1}{20}\)\(\frac{1}{17}>\frac{1}{20}\)\(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)

=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)

hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)

=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)

Do đó: \(S=\frac{1}{2}\)

# Chúc bạn học tốt #

27 tháng 5 2019

áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)

Ta có: \(A=\frac{17^{18}-1}{17^{20}-1}< \frac{17^{18}-1-16}{17^{20}-1-16}\)\(=\frac{17^{18}-17}{17^{20}-17}=\frac{17.\left(17^{17}-1\right)}{17.\left(17^{19}-1\right)}\)\(=\frac{17^{17}-1}{17^{19}-1}\)

\(\Rightarrow A< B\)

27 tháng 5 2019

\(A=\frac{17^{18}-1}{17^{20}-1}\Rightarrow17^2A=\frac{17^{18}-1}{17^{18}-\frac{1}{17^2}}=1-\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}\left(1\right)\)

\(B=\frac{17^{17}-1}{17^{19}-1}\Rightarrow17^2B=\frac{17^{17}-1}{17^{17}-\frac{1}{17^2}}=1-\frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\left(2\right)\)

\(\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}< \frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\Rightarrow1-\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}>1-\frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\left(3\right)\)

Từ \(\left(1\right);\left(2\right)\&\left(3\right)\Rightarrow17^2A>17^2B\Leftrightarrow A>B.\)

21 tháng 4 2017

* Cách làm : Tử giữ nguyên,còn mẫu ta biến đổi như sau:
Mẫu : ( \(\frac{19}{1}\)+ 1 ) + ( \(\frac{18}{2}\)+ 1 ) + ( \(\frac{17}{3}\)+ 1 ) +...+ ( \(\frac{3}{17}\)+ 1 ) + ( \(\frac{2}{18}\)+ 1 ) + ( \(\frac{1}{19}\)+ 1 ) - 19  ( vì ta cộng với 19 số 1 nên phải trừ 19 )
\(\frac{20}{1}\)+  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+...+  \(\frac{20}{17}\)+  \(\frac{20}{18}\)+  \(\frac{20}{19}\)- 19
=  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+...+  \(\frac{20}{17}\)+   \(\frac{20}{18}\)+  \(\frac{20}{19}\)+ ( \(\frac{20}{1}\)- 19)
=  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+ ...+   \(\frac{20}{17}\)+  \(\frac{20}{18}\)+  \(\frac{20}{19}\)+  \(\frac{20}{20}\)
= 20.( \(\frac{1}{2}\)+  \(\frac{1}{3}\)+...+  \(\frac{1}{17}\)+  \(\frac{1}{18}\)+  \(\frac{1}{19}\)+  \(\frac{1}{20}\))
=> \(\frac{Tử}{Mâu}\)=  \(\frac{1}{20}\)

12 tháng 5 2019

Phùng Quang Thịnh biến đổi sai 1 chỗ kìa 

-19 = \(\frac{20}{20}-20\)chứ mà bạn

29 tháng 7 2015

Xét tử:

\(\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+....+\frac{19}{1}\)

\(\left(1+\frac{1}{19}\right)+\left(1+\frac{2}{18}\right)+\left(1+\frac{3}{17}\right)+.....+\left(1+\frac{18}{2}\right)+1\)

\(\frac{20}{19}+\frac{20}{18}+\frac{20}{17}+.....+\frac{20}{2}+1\)

\(\frac{20}{20}+\frac{20}{19}+\frac{20}{18}+\frac{20}{17}+...+\frac{20}{2}\)

\(20\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\right)\)

Thay vào, ta có:

D = \(\frac{20\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}\)

=> D = 20

 

28 tháng 4 2015

Tử số = T = \(\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+....+\frac{18}{2}+\frac{19}{1}\) 

\(=\left(\frac{1}{19}+1\right)+\left(\frac{2}{18}+1\right)+\left(\frac{3}{17}+1\right)+....+\left(\frac{19}{1}+1\right)-19\)

\(=\frac{20}{19}+\frac{20}{18}+\frac{20}{17}+....+\frac{20}{2}+20-19\)

\(=\frac{20}{2}+\frac{20}{3}+....+\frac{20}{18}+\frac{20}{19}+\frac{20}{20}\)

\(=20\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)

= 20.Mẫu số

\(\Rightarrow\frac{\frac{1}{19}+\frac{2}{18}+....+\frac{18}{2}+\frac{19}{1}}{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{19}+\frac{1}{20}}=20\)

24 tháng 3 2017

sao cuối lại - đi 19 vậy bạn