Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+2+22+23+.....+297+298+299
S=20+2+22+23+.....+297+298+299
2S=2.(20+2+22+23+.....+297+298+299)
2S=21+22+23+24+....+298+299+2100
2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)
S=2100-20
S=2100-1
bS=1+2+22+23+.....+297+298+299
S=(1+2)+(22+23)+...+(296+297)+(298+299)
S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)
S=3+22.3+....+296.3+298.3
S=3.(1+22+.....+296+298)\(⋮\)3
Vậy S\(⋮\)3
c Ta có:S=2100-1
2100=24.25=(24)25
Ta có: 24 tân cùng là 6
=>(24)25 tận cùng là 6
Hay 2100=(24)25 tận cùng là 6
=>2100-1 tận cùng là 5
Vậy S tận cùng là 5
Chúc bn học tốt
a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)
S=(2+22)(1+22+24+....+298)
s=6(1+22+24+....+298)
Vi 6 chia het cho 3.Suyra S chia het cho 3
Moi cac ban xem tiep phan sau vao ngay mai
a. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)
=2.3+2^3.3+2^5.3+...+2^99.3
=3.(2+2^2+2^5+...+2^99)
=> 3 chia hết cho 3
b. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)
=2.15+2^5.15+2^9.15+...+2^96.15
=> S chia hết cho 15
Dễ thấy S có 100 số hạng nên ta có:
a,S=(2^1+2^2)+(2^3+2^4)+...+(2^99+2^100)
=2(1+2)+2^3(1+2)+...+2^99(1+2)
=3(2+2^3+...+2^99) chia hết cho 3
b,S=(2^1+2^2+2^3+2^4)+...+(2^97+2^98+2^99+2^100)
=2(1+2+4+8)+...+2^97(1+2+4+8)
=15(2+2^5+...+2^97) chia hết cho 15
c, Ta có: 2S=2^2+2^3+...2^201
2S-S=2^201-2
Do 2^201=4^100 có chữ số tận cùng là 6
Nên 2^201-2 có chữ số tận cùng là 4
Hay S có chữ số tận cùng là 4
S=21+22+23+...+2100
a) S=21+22+23+...+2100
=(21+22)+(23+24)+...+(299+2100)
=2(1+2)+22(1+2)+...+298(1+2)
=2.3+22.3+...298.3
Vì mỗi thừa số trong S chia hết cho 3=> S chia hết cho 3
a, \(S="2+2^2"+"2^3+2^4"+....+"2^{99}+2^{100}"\)
\(S=6+2^2."2+2^2"+2^{98}."2+2^2"\)chia hết cho 6
b, tương tự
c, S chia hết cho 5 vì chia hết cho 15
S cũng chia hết cho 2 và 5 mọi số hạng của S đều chi hết cho 2
Suy ra S chia hết cho 2 và 5
Suy ra S có tận cùng là 10
P/s: Phần a bn thay dấu ngoặc kép thành ngoặc đơn nhé
1) Nhóm 4 số hạng liên tiếp vào
2) Chữ số tận cùng là 2
3) Rút gọn S = 2101 - 2
\(S=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+...+\left(2^{99}+2^{100}\right)\)
\(S=1\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(S=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\)
\(S=6.Q\)
\(S=2.3.Q\)
\(\Rightarrow S⋮3\) (Đpcm)
S= (2+22)+(23+24)+...+(299+2100)
S=(2.3)+(23.3)+...+(299.3)
S=(2+23+...+299).3
=> S chia hết cho 3.
b) Tương tự ghép 4 số sẽ được A chia hết cho 5.A chia hết cho 3 và 5 nên A chia hết cho 15...
2) 21+22+23+24 có tận cùng là 0
25+26+27+28 có tận cùng là 0
Vì có 21 đến 2100 là 100 số, vậy cứ nhóm 4 số như vậy được tận cùng là 0
Chúc bạn học tốt!