Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(10x^2+5x-3=0\) suy ra \(x^2+5x-2=-9x^2+1\) thay vào P được
\(P=\frac{3\left(x^2+5x-2\right)}{9x^2-1}=\frac{3\left(-9x^2+1\right)}{9x^2-1}=\frac{-3\left(9x^2-1\right)}{9x^2-1}=-3\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1/
Ta có: 6x4 -x3-7x2+x+1=0
<=> 6x4-6x3+5x3-5x2-2x2+2x-x+1=0
<=> 6x3(x-1)+5x2(x-1)-2x(x-1)-(x-1)=0
<=> (x-1) ( 6x3+5x2-2x-1)=0
<=> ( x-1) ( 6x3-3x2+8x2-4x+2x-1)=0
<=> (x-1)\(\left[3x^2\left(2x-1\right)+4x\left(2x-1\right)+\left(2x-1\right)\right]\)=0
<=> (x-1) ( 2x-1) ( 3x2+4x+1)=0
<=> (x-1) ( 2x-1) (3x2+3x+x+1)=0
<=> (x-1) (2x-1) \(\left[3x\left(x+1\right)+\left(x+1\right)\right]\)=0
<=> (x-1)(2x-1)(x+1)(3x+1)=0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\\x+1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=1\\x=-1\\3x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\x=-1\\x=\dfrac{-1}{3}\end{matrix}\right.\)
vậy \(S=\left\{\pm1;\dfrac{1}{2};\dfrac{-1}{3}\right\}\)
\(6x^4-x^3-7x^2+x+1=0\)
\(\Leftrightarrow6x^4-6x^3+5x^3-5x^2-2x^2+2x-x+1=0\)
\(\Leftrightarrow6x^3\left(x-1\right)+5x^2\left(x-1\right)-2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x^3+5x^2-2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x^3+6x^2-x^2-x-x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[6x^2\left(x+1\right)-x\left(x+1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(6x^2-x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(6x^2-3x+2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(2x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=\dfrac{1}{2}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
1/ a, \(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)
\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)
\(=\dfrac{1}{x}\)
Vậy \(A=x\)
b/ Khi \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{2}}=2\)
Vậy...
2/a,
\(A=\dfrac{5x+2}{3x^2+2x}+\dfrac{-2}{3x+2}\)
\(=\dfrac{5x+2}{x\left(3x+2\right)}-\dfrac{2x}{x\left(3x+2\right)}\)
\(=\dfrac{5x+2-2x}{x\left(3x+2\right)}\)
\(=\dfrac{3x+2}{x\left(3x+2\right)}\)
\(=\dfrac{1}{x}\)
Vậy....
b/ Với \(x=\dfrac{1}{3}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{3}}=3\)
Vậy..
-3
10x^2 + 5x - 3 =0 hình như pt này vô nghiệm