K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2015

\(4.M=4.\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\right)=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2014}{4^{2013}}\)

=> 4M - M = \(1+\left(\frac{2}{4}-\frac{1}{4}\right)+\left(\frac{3}{4^2}-\frac{2}{4^2}\right)+...+\left(\frac{2014}{4^{2013}}-\frac{2013}{4^{2013}}\right)-\frac{2014}{4^{2014}}\)

=> 3.M = \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

Tính \(N=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)

=> \(4.N=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}\)

=> 4N - N = 4 - \(\frac{1}{4^{2013}}\)=> N = \(\frac{4}{3}-\frac{1}{3.4^{2013}}\)=> N < 4/3

Ta có:  3M < N => M < N/3 => M < (4/3)/3 = 2/9

vậy M < 4/9

 

4 tháng 4 2016

Bạn xem lại đề câu a) cho rõ lại

Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1

                                 = x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1

                                 = x-1 =  2012

27 tháng 3 2017

phải là so sánh A với 2 mới đúng

8 tháng 3 2018

bạn tham khảo tạm ở đây nhé

https://olm.vn/hoi-dap/question/994432.html

^^

8 tháng 3 2018

bạn tham khảo tại đây nhé

http://olm.vn/hoi-dap/question/994432.html

^-^

8 tháng 3 2018

Ta có : 

\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\)

\(\frac{1}{2}T=\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2015}{2^{2015}}\)

\(T-\frac{1}{2}T=\left(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\right)-\left(\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2015}{2^{2015}}\right)\)

\(\frac{1}{2}T=1+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}-\frac{2}{2^2}-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{2015}{2^{2015}}\)

\(\frac{1}{2}T=1+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{2015}{2^{2014}}-\frac{2014}{2^{2014}}\right)-\frac{2015}{2^{2015}}\)

\(\frac{1}{2}T=1+\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)-\frac{2015}{2^{2015}}\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\)

\(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)

\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)\)

\(A=\frac{1}{2}-\frac{1}{2^{2014}}\)

Mà \(\frac{1}{2^{2014}}>0\)

\(\Rightarrow\)\(A=\frac{1}{2}-\frac{1}{2^{2014}}< \frac{1}{2}\)

\(\Leftrightarrow\)\(1+A-\frac{2015}{2^{2015}}< 1+\frac{1}{2}-\frac{1}{2^{2014}}-\frac{2015}{2^{2015}}\)

\(\Leftrightarrow\)\(\frac{1}{2}T< \frac{3}{2}-\left(\frac{1}{2^{2014}}+\frac{2015}{2^{2015}}\right)\)

Mà \(\frac{1}{2^{2014}}+\frac{2015}{2^{2015}}>0\)

\(\Rightarrow\)\(\frac{1}{2}T< \frac{3}{2}\)

\(\Rightarrow\)\(\frac{1}{2}T.2< \frac{3}{2}.2\)

\(\Rightarrow\)\(T< 3\) ( đpcm ) 

Vậy \(T< 3\)

Bạn xem đúng không nhé, chúc bạn học tốt ~

9 tháng 3 2018

thank

DD
27 tháng 5 2021

\(S=2014+\frac{2014}{1+2}+\frac{2014}{1+2+3}+...+\frac{2014}{1+2+3+...+10000}\)

\(S=\frac{2014}{\frac{1.2}{2}}+\frac{2014}{\frac{2.3}{2}}+\frac{2014}{\frac{3.4}{2}}+...+\frac{2014}{\frac{10000.10001}{2}}\)

\(S=\frac{4028}{1.2}+\frac{4028}{2.3}+\frac{4028}{3.4}+...+\frac{4028}{10000.10001}\)

\(S=4028\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10000.10001}\right)\)

\(S=4028\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10001-10000}{10000.10001}\right)\)

\(S=4028\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10000}-\frac{1}{10001}\right)\)

\(S=4028\left(1-\frac{1}{10001}\right)=\frac{40280000}{10001}\)

10 tháng 7 2016

\(M=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\)

\(4M=\frac{4}{4}+\frac{4}{4^2}+...+\frac{4}{4^{1000}}\)

\(4M=1+\frac{1}{4}+\frac{1}{4^2}+..+\frac{1}{4^{999}}\)

\(4M-M=\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\right)\)

\(3M=1-\frac{1}{4^{1000}}\)

\(M=\left(1-\frac{1}{4^{1000}}\right):3\)

\(M=\frac{4^{1000}-1}{4^{1000}}:3\)

\(M=\frac{4^{1000}-1}{3.4^{1000}}\)

\(\frac{1}{3}=\frac{4^{1000}}{3.4^{1000}}\)

vì \(\frac{4^{1000}-1}{4^{1000}}< \frac{4^{1000}}{3.4^{1000}}\)

nên \(M< \frac{1}{3}\)

13 tháng 3 2019

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)

\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)

\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)

13 tháng 3 2019

3/\(7a+b=0\Rightarrow b=-7a\)

\(f\left(x\right)=ax^2-7ax+c\).Ta có: \(f\left(10\right)=100a-70a+c=30a+c\)

\(f\left(-3\right)=30a+c\).Nhân theo vế ta có đpcm:

\(f\left(10\right).f\left(-3\right)=\left(30a+c\right)^2\ge0\) (đúng)