K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2015

M=1+  3^100/1+3+3^2+..+3^99

=1+1:   1+3+3^2+...+3^99/3^100

=1+1:(1/3^100+1/3^99+..+1/3)

tương tự ta có

N=1+1:         (1/5^100+1/5^99+......+1/5)

do 1/5^100<1/3^100;1/5^99<1/3^99,...,1/5<1/3

=M<N

30 tháng 5 2015

M=1+  3^100/1+3+3^2+..+3^99

=1+1:   1+3+3^2+...+3^99/3^100

=1+1:(1/3^100+1/3^99+..+1/3)

tương tự ta có

N=1+1:         (1/5^100+1/5^99+......+1/5)

do 1/5^100<1/3^100;1/5^99<1/3^99,...,1/5<1/3

=M<N

22 tháng 1 2018

M=(1.3.5.7.....99)/(2.4.6.8.....100)

số số hạng của tử = (99-1)/2 +1 = 50 -> 1.3.5.7....99= (99+1)*50/2 =2500

số số hạng của mẫu =  (100-2)/2+1 =50 -> 2.4.6.8....100= (100+2)*50/2 =2550

-->  M= 2500/2550 =50/51

Làm tương tự với N ta có kq N=51/52 ->M/N= 2600/2601 -> M<N

22 tháng 1 2018

bấm phân số kiểu j z bạn

12 tháng 5 2018

Sửa N=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)

12 tháng 5 2018

Ta có : \(\frac{1}{2}< \frac{2}{3}\)\(\frac{3}{4}< \frac{4}{5}\)\(\frac{5}{6}< \frac{6}{7}\); ... ; \(\frac{99}{100}< \frac{100}{101}\)

\(\Rightarrow\)\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)hay M < N

b) M .N = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}=\frac{1.2.3.4.5.6...99.100}{2.3.4.5.6.7...100.101}=\frac{1}{101}\)

c) vì M < N nên M. M < M . N = \(\frac{1}{101}\)\(< \frac{1}{100}\)

\(\Rightarrow M< \frac{1}{10}\)

23 tháng 3 2015

bạn giải ra hộ mình nhé !

24 tháng 3 2015

a) M>N

b)M*N=1/101

c)bỏ cuộc 

19 tháng 4 2017

A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

A < 1 - \(\frac{1.}{100}\)

A < \(\frac{99}{100}< \frac{199}{100}\)

=> A < \(\frac{199}{100}\)

b,

S = \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{99}{10^2}\)

S = \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{9.11}{10.10}\)

S = \(\frac{1.3.2.4.3.5.4.6.5.7...9.11}{2.2.3.3.4.4...10.10}\)

S = \(\frac{1.2.3^2.4^2.5^2...9^2.10.11}{2^2.3^3.4^2...10^2}\)

S = \(\frac{1.11}{2.10}\)

S = \(\frac{11}{20}\)

23 tháng 4 2016

Ta có:

Tích của M và N là:

Tử: 1*2*3*4*5*............*99*100(Tích của tử M và N)

Mẫu: 2*3*4*5*6*......*100*101(Tích của mẫu M và N)

Rút gọn cho nhau ta được:

1/101

Vậy M*N=1/101

23 tháng 4 2016

Tích M.N = 1/101

Y
18 tháng 4 2019

\(5A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)

\(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)

\(\Rightarrow4A=5A-A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)

Đặt \(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

Khi đó \(4A=B-\frac{99}{5^{100}}< B\)

\(5B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}\)

\(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}+\frac{1}{5^{99}}\)

\(\Rightarrow4B=5B-B=1-\frac{1}{5^{99}}\)

\(\Rightarrow B=\frac{1}{4}-\frac{1}{4\cdot5^{99}}< \frac{1}{4}\)

\(\Rightarrow4A < B\Rightarrow4A< \frac{1}{4}\)

\(\Rightarrow A< \frac{1}{16}\) ( đpcm )

Y
18 tháng 4 2019

2. \(M=\left(1+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(M=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)

\(\Rightarrow\left(M-N\right)^3=0\)