Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: ĐKXĐ: \(x\notin\left\{0;2;-2;3\right\}\)
\(A+\left(\dfrac{4x}{x+2}-\dfrac{8x^2}{\left(x+2\right)\left(x-2\right)}\right):\left(\dfrac{x-1}{x\left(x-2\right)}-\dfrac{2}{x}\right)\)
\(=\dfrac{4x^2-8x-8x^2}{\left(x+2\right)\left(x-2\right)}:\dfrac{x-1-2x+4}{x\left(x-2\right)}\)
\(=\dfrac{-4x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x-2\right)}{-x+3}\)
\(=\dfrac{-4x}{-x+3}=\dfrac{4x}{x-3}\)
b: Để A<0 thi x/x-3<0
=>0<x<3
ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)
\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)
Đề sai à ??
Câu 1 :
a) Rút gọn P :
\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)
\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)
\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)
a)Có A=\(\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)(ĐKXĐ \(x\ne2,-2,-1\))
=\(\left(\frac{2-x}{\left(2-x\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}-\frac{x}{\left(2-x\right)\left(2+x\right)}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
=\(\frac{2-x+2x+4-x}{\left(2-x\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
=\(\frac{6\left(2-x\right)\left(x+1\right)}{6\left(2-x\right)\left(x+2\right)^2}\)
=\(\frac{x+1}{\left(x+2\right)^2}\)
b)Có A=\(\frac{x+1}{\left(x+2\right)^2}\)
Để A>0 <=> x+1>0 <=>x>-1
c) Có x2+3x+2=0
<=> x2+2x+x+2=0
<=> x(x+2)+(x+2)=0
<=>(x+1)(x+2)=0
<=> x=-1 hoặc x=-2
Ôi mình nhầm để giải lại:
a)đkxđ: x\(\ne\left\{-1;1;2\right\}\)
M=\(\dfrac{\left(x^2-3x+2\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-4x+4\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)^2}=\dfrac{x+2}{x+1}\)
b)Với x\(\ne\left\{-1;1;2\right\}\) thì M=\(\dfrac{x+2}{x+1}\)
Để M>0 thì \(\dfrac{x+2}{x+1}\)>0
<=> \(\left\{{}\begin{matrix}x+1>0\\x+2>0\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}x+1< 0\\x+2< 0\end{matrix}\right.\)
<=>x>-1 hoặc x<-2
Vậy x>-1 hoặc x<-2 và x khác {1;2} thì M>0
M<0 <=>\(\dfrac{x+2}{x+1}\)<0
<=>\(\left\{{}\begin{matrix}x+1< 0\\x+2>0\end{matrix}\right.hoặc}\left\{{}\begin{matrix}x+1>0\\x+2< 0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x< -1\\x>-2\end{matrix}\right.hoặc}\left\{{}\begin{matrix}x>-1\\x< -2\end{matrix}\right.\)
Vậy -2<x<-1 thì M<0
M=0<=> \(\dfrac{x+2}{x+1}\)=0
=>x+2=0
<=>x=-2(TMĐKXĐ)
Vậy x=-2 thì M=0
M vô nghĩa khi M không xác định <=> x={-1;1;2}
\(\dfrac{\left(x^2-3x+2\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-4x+4\right)}\)
\(\dfrac{\left(x^2-x-2x+2\right)\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x^2-2x-2x+4\right)}\)
\(\dfrac{\left[x\left(x-1\right)-2\left(x-1\right)\right]\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left[x\left(x-2\right)-2\left(x-2\right)\right]}\)
\(\dfrac{\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-2\right)}=\dfrac{x+2}{x-1}\)