K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Phép cộng các phân thức đại số

Phép cộng các phân thức đại số

21 tháng 11 2017

d)

\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+.....-\dfrac{1}{x+99}+\dfrac{1}{x+100}\)=\(\dfrac{1}{x}-\dfrac{1}{x+100}\)

=\(\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)

=\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{100}{x\left(x+100\right)}\)

22 tháng 11 2017

Cảm ơn, mình làm được rồi :>

28 tháng 11 2022

a: \(=\dfrac{1}{\left(x-y\right)\left(y-z\right)}-\dfrac{1}{\left(y-z\right)\left(x-z\right)}-\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)

b: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(x-y\right)\left(y-z\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{z\left(y^2-x^2\right)-z^2\left(y-x\right)-xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{\left(x-y\right)\left[-z\left(x+y\right)+z^2+xy\right]}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{-zx-zy+z^2+xy}{xyz\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{z\left(z-x\right)-y\left(z-x\right)}{xyz\left(y-z\right)\left(x-z\right)}=\dfrac{1}{xyz}\)

26 tháng 11 2022

a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

=0

c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{1}{xyz}\)

 

21 tháng 7 2018

\(a,\dfrac{1}{x^2-x}+\dfrac{2x}{4x^3}-\dfrac{1}{x^2+x+1}\)

\(=\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{2x^2}-\dfrac{1}{x^2+x+1}\)

\(=\dfrac{2x\left(x^2+x+1\right)+\left(x-1\right).\left(x^2+x+1\right)-2x^2.\left(x-1\right)}{2x^2.\left(x-1\right).\left(x^2+x+1\right)}\)

\(=\dfrac{2x^3+2x^2+2x+x^3-1-2x^3+2x^2}{2x^2.\left(x^3-1\right)}\)

\(=\dfrac{4x^2+2x+x^3-1}{2x^5-2x^2}\)

\(=\dfrac{x^3+4x^2+2x-1}{2x^5-2x^2}\)

21 tháng 7 2018

\(b,\dfrac{1}{x^2-x+1}+1-\dfrac{x^2+2}{\left(x+1\right).\left(x^2-x+1\right)}\)

\(=\dfrac{1}{x^2-x+1}+1-\dfrac{x^2+2}{\left(x^2-x+1\right)}\)

\(=\dfrac{x+1\left(x+1\right).\left(x^2-x+1\right)-\left(x^2+2\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x+1+x^3+1-x^2-2}{\left(x+1\right).\left(x^2-x+1\right)}\)

\(=\dfrac{x+0+x^3-x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x\left(1+x^2-x\right)}{\left(x+1\right).\left(x^2-x+1\right)}\)

\(=\dfrac{x}{x+1}\)

6 tháng 10 2017

\(A=x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x^2+2xy+y^2\right)-\left(xz+yz\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(=0\)

<><><>

\(A=\left(\dfrac{x}{y}+1\right)\left(\dfrac{y}{z}+1\right)\left(\dfrac{z}{x}+1\right)\)

\(=\dfrac{x+y}{y}\times\dfrac{y+z}{z}\times\dfrac{z+x}{x}\)

\(=\dfrac{-z}{y}\times\dfrac{-x}{z}\times\dfrac{-y}{x}\)

\(=-1\)

<><><>

\(A=\dfrac{1}{y^2+z^2-x^2}+\dfrac{1}{x^2+z^2-y^2}+\dfrac{1}{x^2+y^2-z^2}\)

\(=\dfrac{1}{\left(y+z\right)^2-2yz-x^2}+\dfrac{1}{\left(x+z\right)^2-2xz-y^2}+\dfrac{1}{\left(x+y\right)^2-2xy-z^2}\)

\(=\dfrac{1}{\left(-x\right)^2-2yz-x^2}+\dfrac{1}{\left(-y\right)^2-2xz-y^2}+\dfrac{1}{\left(-z\right)^2-2xy-z^2}\)

\(=-\dfrac{1}{2}\left(\dfrac{1}{yz}+\dfrac{1}{xz}+\dfrac{1}{xz}\right)\)

\(=-\dfrac{1}{2}\times\dfrac{x+y+z}{xyz}\)

\(=0\)