Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik lười quá bạn tham khảo câu 3 tại đây nhé:
Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath
\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)
\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)
\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)
\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)
Ta có : \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};....;\frac{99}{100}< \frac{100}{101}\)
Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)\(\Rightarrow B>A\)
\(\Rightarrow A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)
\(\Rightarrow A.B=\frac{1}{101}\)
Vì \(B>A\)\(\Rightarrow A.B>A.A=A^2\)
\(\Rightarrow\frac{1}{101}>A^2\)
Mà \(\frac{1}{10^2}>\frac{1}{101}>A^2\Rightarrow\frac{1}{10^2}>A^2\)
\(\Rightarrow\frac{1}{10}< A\left(1\right)\)\(\)
Ta lai có :
\(\frac{1}{2}=\frac{1}{2};\frac{3}{4}>\frac{2}{3};\frac{5}{6}>\frac{4}{5};...;\frac{99}{100}>\frac{98}{99}\)
Đặt \(C=\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A.C=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\right)\)
\(\Rightarrow A.C=\frac{1}{2}.\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)
\(\Rightarrow A.C=\frac{1}{200}\)
Vì \(A>C\)
\(\Rightarrow A^2>A.C=\frac{1}{200}\)
Mà \(A^2>\frac{1}{200}>\frac{1}{15^2}\)
\(\Rightarrow A^2>\frac{1}{15^2}\)
\(\Rightarrow A>\frac{1}{15}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\Rightarrow\frac{1}{15}< A< \frac{1}{10}\)
\(\RightarrowĐPCM\)
Bài giải
\(\frac{1}{2}< \frac{2}{3}\text{ ; }\frac{3}{4}< \frac{4}{5}\text{ ; }\frac{5}{6}< \frac{6}{7}\text{ ; }...\text{ ; }\frac{99}{100}< \frac{100}{101}\)
\(\text{Đặt }B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)
\(\Rightarrow\text{ }A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)
\(\Rightarrow\text{ }A\cdot A< A\cdot B=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right)\)
\(A\cdot A< A\cdot B=\frac{1}{101}< \frac{1}{10}\)
\(A^2< \frac{1}{10}\text{ }\Rightarrow\text{ }A< \frac{1}{10}^{^{\left(1\right)}}\)
\(\frac{1}{2}=\frac{1}{2}\text{ ; }\frac{3}{4}>\frac{2}{3}\text{ ; }\frac{5}{6}>\frac{4}{5}\text{ ; }...\text{ ; }\frac{99}{100}>\frac{98}{99}\)
\(\text{Đặt }C=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\)
\(A\cdot C=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right)\cdot\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\right)\)
\(A\cdot C=\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot...\cdot\frac{98}{99}\cdot\frac{99}{100}\)
\(A\cdot C=\frac{1}{200}\)
\(\text{Vì }A>C\text{ }\Rightarrow\text{ }A^2>A\cdot C=\frac{1}{200}\)
\(\text{Mà }A^2>\frac{1}{200}>\frac{1}{15^2}\)
\(\Rightarrow\text{ }A>\frac{1}{15}^{^{\left(2\right)}}\)
\(\text{Từ }^{\left(1\right)}\text{ và }^{\left(2\right)}\)
\(\Rightarrow\text{ }\frac{1}{15}< A< \frac{1}{10}\)
\(\Rightarrow\text{ }\text{ĐPCM}\)
b.Đặt A = \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+....+\frac{1}{100^2}\) < \(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{99.100}\)= \(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{100}\)= \(\frac{1}{4}-\frac{1}{100}=\frac{25}{100}-\frac{1}{100}=\frac{24}{100}<\frac{25}{100}=\frac{1}{4}\)(1)
A > \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)= \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)(2)
Từ (1) và (2) =>\(\frac{1}{6}\) < A < \(\frac{1}{4}\)
a, \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)
Ta có: \(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)
\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)
\(\Rightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
Vậy...
b, Đặt A là tên của tổng trên
Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Đặt B là biêu thức trong ngoặc
Ta có: \(1=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow B< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow B< 2-\frac{1}{50}< 2\)
Thay B vào A ta được:
\(A< \frac{1}{2^2}.2=\frac{1}{2}\)
Đặt : \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
Ta thấy :
\(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
\(\frac{1}{7^2}< \frac{1}{6.7}\)
\(.......................\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}-\frac{1}{100}=\frac{6}{25}\)
Vì \(\frac{1}{6}< \frac{6}{25}< \frac{1}{4}\)nên \(\frac{1}{6}< A< \frac{1}{4}\)hay \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
~ Hok tốt ~
Bài 1:
Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
Ta có:
\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
Ta có:
\(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)
\(\Rightarrow\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(\text{đ}pcm\right)\)
Bài 2:
\(a)\)Tách tổng A thành ba nhóm:
\(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{70}\right)\)
\(A>\frac{1}{30}\cdot20+\frac{1}{50}\cdot20+\frac{1}{70}\cdot20=\frac{2}{3}+\frac{2}{5}+\frac{2}{7}=1\frac{37}{105}\)
\(A>1\frac{35}{105}=1\frac{1}{3}=\frac{4}{3}\left(\text{đ}pcm\right)\)
\(b)\)Tách tổng A thành sáu nhóm:
\(A=\left(\frac{1}{11}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)\)\(+\left(\frac{1}{51}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{70}\right)\)
\(A< \frac{1}{11}\cdot10+\frac{1}{21}\cdot10+\frac{1}{31}\cdot10+\frac{1}{41}\cdot10+\frac{1}{51}\cdot10+\frac{1}{61}\cdot10\)
\(A< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)< 2+0,5=2,5\left(\text{đ}pcm\right)\)
#Sakura
K< 1/5 hả bạn