K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

Ta có

\(x+y+z+\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}=x+y+z\)

=> \(x+\frac{x^2}{y+z}+y+\frac{y^2}{z+x}+z+\frac{z^2}{y+x}=x+y+z\)

=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+x}=x+y+z\)

=> \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}=1\)

24 tháng 11 2018

Bạn có thể sử dụng BĐT thức Cô-si và xét trường hợp dấu bằng xảy ra nhé bạn !

5 tháng 4 2020

Câu hỏi của Trần Ngọc Tú - Toán lớp 8 - Học toán với OnlineMath

13 tháng 3 2020

\(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\\ =\frac{x}{y-z}=-\left(\frac{y}{z-x}+\frac{z}{x-y}\right)\\ =\frac{x}{\left(y-x\right)^2}=-\left(\frac{y}{z-x}+\frac{z}{x-y}\right).\frac{1}{y-x}=\frac{-xy+y^2-z^2+xz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(1\right)\)

Tự làm với 2 phân thức còn lại, ta có:

\(\frac{y}{\left(z-x\right)^2}=\frac{-x^2+z^2+xy-yz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(2\right)\)

\(\frac{z}{\left(x-y\right)^2}=\frac{x^2-y^2-xz+yz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(3\right)\)

Cộng 3 vế lại với nhau ta có: \(Q=\frac{x}{\left(y-x\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=0\)

3 tháng 12 2018

\(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=1\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xy}+\frac{2}{yz}-\frac{2}{xz}=1\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+\frac{2}{xy}-\frac{2}{yz}+\frac{2}{xz}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+\frac{2z-2x+2y}{xyz}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+\frac{2z-2\left(y+z\right)+2y}{xyz}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+0=1\)

12 tháng 2 2017

Câu 1, Quy đồng mẫu của 2 về lấy MTC là (x-y)(y-z)(z-x).

Câu 2, Chỉ có thể xảy ra khi a+b+c=x+y+z=x/a+y/b+z/c=0

2 tháng 1 2017

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

3 tháng 1 2017

chỉ thả tai thui

13 tháng 11 2019

Cậu vào phần thống kê câu trả lời của mk ấy, ngay câu đầu tiên 

tham khảo nha: Câu hỏi của Nguyễn Thị Phương Thảo - Toán lớp 8 - Học toán với OnlineMath

13 tháng 11 2019

Ta có: x + y + z = 0 

=> x = -y - z

=> x2 = (-y - z)2

=> x2 = y2 + 2yz + z2

=> x2 - y2 - z2 = 2yz

CMTT: y2 = x2 + 2xz + z2 => y2 - z2 - x2 = 2xz

          z2 = x2 + 2xy + y2 => z2 - x2 - y2 = 2xy

Khi đó, ta có:M = \(\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}\)

M = \(\frac{x^3+y^3+z^3}{2xyz}\)

M = \(\frac{\left(x+y\right)\left(x^2-xy+y^2\right)+z^3}{2xyz}\)

M = \(\frac{\left(x+y\right)\left(x^2+2xy+y^2\right)-3xy\left(x+y\right)+z^3}{2xyz}\)

M = \(\frac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)

M = \(\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+x^2\right]-3xy\left(x+y\right)}{2xyz}\)(do x + y + z = 0)

M = \(\frac{-3xy.z}{2xyz}=-\frac{3}{2}\) (do x + y = -z)

13 tháng 11 2019

Sửa lại kq M = 3/2 (thay dòng cuối) (-3xy.z --> -3xy(-z)) n/b

30 tháng 12 2018

Từ \(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\Rightarrow\frac{x}{y-z}=-\frac{y}{z-x}-\frac{z}{x-y}\)

\(\Rightarrow\frac{x}{y-z}=\frac{y}{x-z}+\frac{z}{y-x}\)

\(\Leftrightarrow\frac{x}{y-z}=\frac{y\left(y-x\right)+z\left(x-z\right)}{\left(x-z\right)\left(y-x\right)}\)

\(\Leftrightarrow\frac{x}{y-z}=\frac{y^2-xy+zx-z^2}{\left(x-z\right)\left(y-x\right)}\)

\(\Leftrightarrow\frac{x}{\left(y-z\right)^2}=\frac{y^2-xy+zx-z^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}\)

C/m tương tự đc \(\frac{y}{\left(z-x\right)^2}=\frac{z^2-yz+xy-x^2}{\left(x-z\right)\left(y-z\right)\left(y-z\right)}\)

                          \(\frac{z}{\left(x-y\right)^2}=\frac{x^2-xz+zy-y^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}\)

Khi  đó \(Q=\frac{y^2-xy+xz-z^2+z^2-yz+xy-x^2+x^2-xz+yz-y^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}=0\)

Vậy Q=0