Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{3x-2y}{4}=\frac{4y-3z}{2}=\frac{2z-4x}{3}\)
\(\Leftrightarrow\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x}{9}=\frac{12x-8y+8y-6z+6z-12x}{16+4+9}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{3x-2y}{4}=0\\\frac{4y-3z}{2}=0\\\frac{2z-4x}{3}=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}3x=2y\\4y=3z\\2z=4x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{4}\\\frac{x}{2}=\frac{z}{4}\end{cases}}\) \(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x-2y+3z}{2-6+12}=\frac{8}{8}=1\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{3}=1\\\frac{z}{4}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)
Vậy : \(\left(x,y,z\right)=\left(2,3,4\right)\)
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
Câu 1 : \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)\(\Rightarrow\)\(\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{2y}{5}=\frac{1}{4}.\frac{4z}{7}\)\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{10}=\frac{z}{7}\) \(\Rightarrow\)\(\frac{3x}{24}=\frac{5y}{50}=\frac{7z}{49}=\frac{3x+5y+7z}{24+50+49}=\frac{123}{123}=1\)
\(\frac{3x}{24}=1\Rightarrow3x=24\Rightarrow x=8\)
\(\frac{5y}{50}=1\Rightarrow5y=50\Rightarrow y=10\)
\(\frac{7z}{49}=1\Rightarrow7z=49\Rightarrow z=7\)
Vậy x,y,z lần lượt là 8,10,7
x^2-4xy+4y^2 = 0
<=> (x-2y)^2 = 0
<=> x-2y = 0
<=> x=2y
Thay x=2y vào thì :
A = 6y-2y/4y+5y = 4y/9y = 4/9
Tk mk nha
Ta có: \(x^2-4xy+4y^2=0\)
\(\Leftrightarrow\left(x-2y\right)^2=0\)
\(\Leftrightarrow x=2y\)
Thế vào A, ta được: \(\frac{3.2y-2y}{2.2y+5y}=\frac{6y-2y}{4y+5y}=\frac{4y}{9y}=\frac{4}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x}{5}=\frac{2y}{4}=\frac{6x+4y}{5\cdot2+4\cdot2}=\frac{15}{18}=\frac{5}{6}\)
\(\Rightarrow18x=25\Rightarrow x=\frac{25}{18}\)
\(\Rightarrow12y=20\Rightarrow y=\frac{20}{12}=\frac{5}{3}\)
Vậy \(x=\frac{25}{18};y=\frac{5}{3}\)
ta có: 3x/5=2y/4 =6x/10 =4y/8
Aps dụng tính chất dãy tỉ số bằng nhau :
6x/10=4y/8=6x+4y/10+8=15/18=5/6
Nên 3x/5=5/6 suy ra 3x=25/6 suy ra x=25/18
2y/4=5/6 suy ra 2y= 10/3 suy ra y=10/6
Vậy x=25/18; y=10/6
Ta có: \(\frac{x+2y}{3x+4y}=\frac{2}{5}\)
=> (x + 2y).5 = 2.(3x + 4y)
=> 5x + 10y = 6x + 8y
=> 10y - 8y = 6x - 5x
=> 2y = x
=> \(\frac{2y}{x}=1\)
Vậy \(\frac{2y}{x}=1\)