Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ne5;2m\)
\(\frac{x+2m}{x-5}-1=\frac{x+5}{2m-x}+1\)
\(\Leftrightarrow\frac{x+2m-x+5}{x-5}=\frac{x+5+2m-x}{2m-x}\)
\(\Leftrightarrow\frac{2m+5}{x-5}=\frac{5+2m}{2m-x}\Leftrightarrow\frac{\left(2m+5\right)\left(2m-x\right)}{\left(x-5\right)\left(2m-x\right)}=\frac{\left(5+2m\right)\left(x-5\right)}{\left(x-5\right)\left(2m-x\right)}\)
\(\Leftrightarrow4m^2-2mx+10m-5x=5x-25+2mx-10m\)
\(\Leftrightarrow4m^2-4mx+20m-10x+25=0\)
a)\(\frac{x+2}{x-m}=\frac{x+1}{x-1}\Leftrightarrow\left(x+2\right)\left(x-1\right)=\left(x+1\right)\left(x-m\right)\)
\(\Leftrightarrow x^2+x-3=x^2-\left(m-1\right)x-m\)
\(\Leftrightarrow m.x+m-3=0\)
\(\Leftrightarrow m.x=3-m\)
Để phương trình (1) nhận \(x=4\)là nghiệm của phương trình thì:
\(4.m=3-4=-1\)
\(\Leftrightarrow m=\frac{-1}{4}\)
b) Để phương trình \(a.x+b=0\)có nghiệm duy nhất thì:\(a\ne0\)
\(\Rightarrow\)Phương trình (1) có nghiệm duy nhất \(\Leftrightarrow m\ne0\)
Bổ sung điều kiện: \(\hept{\begin{cases}x\ne m\\x\ne1\end{cases}}\)
\(\Rightarrow m\ne1\)
a) m thỏa mãn điều kiện
b) Bổ sung thêm: Để phương trình (1) có nghiệm duy nhất thì:\(\hept{\begin{cases}m.m+m-3\ne0\\m.1+m-3\ne0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}m\ne\frac{-1\pm\sqrt{13}}{2}\\m\ne\frac{3}{2}\end{cases}}\)
Thay x = 4 vào phương trình, ta được :
\(1-m=2\left(2m+1\right)\left(m-1\right)\)
\(\Leftrightarrow2\left(2m+1\right)\left(m-1\right)+\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m+2+1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m-1=0\\4m+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=1\\m=\frac{-3}{4}\end{cases}}\)
\(\frac{2m-1}{x-1}=m-2\)
\(\Leftrightarrow2m-1=\left(m-2\right)\left(x-1\right)\)
\(\Leftrightarrow2m-1=mx-m-2x+2\)
\(\Leftrightarrow2m+m-1-2=mx-2x\)
\(\Leftrightarrow3m-3=x\left(m-2\right)\)
\(\Leftrightarrow3\left(m-1\right)=x\left(m-2\right)\)
Với m=2
=>3.1=x.0(loại)=>pt vô nghiệm
Vậy m khác 2
\(\Rightarrow x=\frac{3\left(m-1\right)}{m-2}\)
Vậy với m khác 2 pt có nghiệm duy nhất là \(S=\left\{\frac{3\left(m-1\right)}{m-2}\right\}\)
Đk: \(x\ne m,x\ne2,x\ne2m\)
Ta có: \(\frac{3}{x-m}-\frac{1}{x-2}=\frac{2}{x-2m}\)
=> \(3\left(x-2\right)\left(x-2m\right)-\left(x-m\right)\left(x-2m\right)=2\left(x-m\right)\left(x-2\right)\)
<=> \(3\left(x^2-2mx-2x+4m\right)-x^2+2mx+mx-2m^2=2\left(x^2-2x-mx+2m\right)\)
<=> \(3x^2-6mx-6x+12m-x^2+2mx+mx-2m^2-2x^2+4x+2mx-4m=0\)
<=> \(-2x-mx+8m-2m^2=0\)
<=> \(x\left(m+2\right)=8m-2m^2\)
Để pt có nghiệm duy nhất <=> m + 2 khác 0 <=> m khác -2