K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

1,Giải sử x0 là nghiệm chung của hai pt

Ta có hệ: \(\left\{{}\begin{matrix}x_0^2-\left(m+2\right)x_0+3m-1=0\left(1\right)\\x_0^2-\left(2m+3\right)x_0+3m+3=0\end{matrix}\right.\)

=> \(\left(2m+3\right)x_0-\left(m+2\right)x_0+3m-1-3m-3=0\)

<=> \(x_0\left(m+1\right)-4=0\)

Do hai pt có nghiệm chung => \(x_0\in R\) => \(m\ne-1\)

<=> \(x_0=\frac{4}{m+1}\) thay vào (1) có

\(\frac{16}{\left(m+1\right)^2}-\frac{\left(m+2\right).4}{m+1}+3m-1=0\)

<=> \(\frac{16}{\left(m+1\right)^2}-\frac{4\left(m+2\right)\left(m+1\right)}{\left(m+1\right)^2}+\frac{3m\left(m+1\right)^2}{\left(m+1\right)^2}-\frac{\left(m+1\right)^2}{\left(m+1\right)^2}=0\)

<=> \(16-4\left(m^2+3m+2\right)+3m\left(m^2+2m+1\right)-\left(m^2+2m+1\right)=0\)

<=> \(16-4m^2-12m-8+3m^3+6m^2+3m-m^2-2m-1=0\)

<=> \(3m^3+m^2-11m+7=0\)

<=> \(3m^3-3m^2+4m^2-4m-7m+7=0\)

<=>\(3m^2\left(m-1\right)+4m\left(m-1\right)-7\left(m-1\right)=0\)

<=> \(\left(m-1\right)\left(3m^2+4m-7\right)=0\)

<=> \(\left(m-1\right)^2\left(3m+7\right)=0\)

<=> \(\left[{}\begin{matrix}m=1\\m=-\frac{7}{3}\end{matrix}\right.\)

20 tháng 10 2019

@@ cái gì vậy!!

30 tháng 5 2020

đây nhé

27 tháng 7 2021

Cho mình xin lời giải với

2 tháng 7 2020

vào TKHĐ của mình để xem hình ảnh nhé !

6 tháng 4 2019

a,

Ta có đenta'=[-(m+2)]^2-6m-1

                 =m^2+4m+4-6m-1

                 =m^2-2m+3

                 =(m-1)^2+2>0

vậy phương trình có 2 no pb với mọi m