Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
Lời giải:
Ta có:
$f(4)=16a+4b+c$
$f(-2)=4a-2b+c$
Cộng theo vế: $f(4)+f(-2)=20a+2b+2c=2(10a+b+c)=2.0=0$
$\Rightarrow f(-2)=-f(4)$
$\Rightarrow f(4).f(-2)=f(4).-f(4)=-f(4)^2\leq 0$
Ta có đpcm.
ĐỀ bài em sai nhé
Cho \(f\left(x\right)=ax^{2^{ }}+bx+c\)
suy ra \(f\left(x_0\right)=0\Rightarrow f\left(x_0\right)=ax_0^{2^{ }}+bx_0+c=0\)
\(g\left(x\right)=cx^{2^{ }}+bx+a\Rightarrow g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a\)
\(\Rightarrow g\left(\frac{1}{x_0}\right)=\frac{c}{x_0^2}+\frac{b}{x_0}+a=\frac{c+bx_0+ax^2_0}{x_0^2}=\frac{f\left(x_0\right)}{x_0^2}=0\) (với x0 khác 0)
\(f\left(-1\right)=a\left(-1\right)^2+b.\left(-1\right)+c\)
\(=a-b+c\)
\(f\left(2\right)=a.2^2+b.2+c\)
\(=4a+2b+c\)
\(\Rightarrow f\left(2\right)-2.f\left(-1\right)=\left(4a+2b+c\right)-2\left(a-b+c\right)\)
\(=2a+4b-c=0\)
\(\Rightarrow f\left(2\right)=2.f\left(-1\right)\)
\(\Rightarrow f\left(2\right)\)và \(2.f\left(-1\right)\)cùng dấu
\(\Rightarrow f\left(2\right)\)và \(f\left(-1\right)\)cùng dấu
\(\Rightarrow f\left(2\right).f\left(-1\right)\ge0\)(đpcm)
Ta có :\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)
\(f\left(2\right)=a.2^2+b.2+c=4a+2b+c\)
\(\implies\) \(f\left(2\right)-2f\left(-1\right)=\left(4a+2b+c\right)-2.\left(a-b+c\right)\)
\(\implies\) \(f\left(2\right)=2.f\left(-1\right)\)
\(\implies\) \(f\left(-1\right).f\left(2\right)=f\left(-1\right).2f\left(-1\right)=f\left(-1\right)^2.2\) \(\geq\) \(0\)
\(\implies\) \(f\left(-1\right).f\left(2\right)\) \(\geq\) \(0\) \(\left(đpcm\right)\)
\(f\left(-1\right)=a+c-b\)
\(f\left(3\right)=9a+3b+c=10a+2b+2c+b-a-c=b-a-c\)
\(\Rightarrow f\left(-1\right).f\left(3\right)=\left(a+c-b\right)\left(b-a-c\right)=-\left(a+c-b\right)^2\le0\)
\(f\left(\frac{5}{7}\right)=f\left(\frac{1}{\frac{7}{5}}\right)=\frac{1}{\left(\frac{7}{5}\right)^2}.f\left(\frac{7}{5}\right)=\frac{25}{49}.f\left(1+\frac{2}{5}\right)=\frac{25}{49}.\left(f\left(1\right)+f\left(\frac{2}{5}\right)\right)\)
Ta có : \(f\left(\frac{2}{5}\right)=f\left(\frac{1}{5}+\frac{1}{5}\right)=f\left(\frac{1}{5}\right)+f\left(\frac{1}{5}\right)=2.f\left(\frac{1}{5}\right)=2.\frac{1}{5^2}.f\left(5\right)=\frac{2}{25}.f\left(1+1+1+1+1\right)\)
\(=\frac{2}{25}.\left(f\left(1\right)+f\left(1\right)+f\left(1\right)+f\left(1\right)+f\left(1\right)\right)=\frac{2}{25}.5=\frac{2}{5}\)
Vậy \(f\left(\frac{5}{7}\right)=\frac{49}{25}.\left(1+\frac{2}{5}\right)=\frac{25}{49}.\frac{7}{5}=\frac{5}{7}\)
a) \(\hept{\begin{cases}f\left(2\right)=156\\f\left(-3\right)=156\\f\left(-1\right)=132\end{cases}\Rightarrow\hept{\begin{cases}4a+2b+c=156\\9a-3b+c=156\\a-b+c=132\end{cases}\Rightarrow}\hept{\begin{cases}4a+2b+132-a+b=156\\9a-3b+132-a+b=156\\c=132-a+b\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}3a+3b=24\\8a-2b=24\\c=132-a+b\end{cases}\Rightarrow\hept{\begin{cases}a+b=8\\-4a+b=-12\\c=132-a+b\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}5a=20\\b=8-a\\c=132-a+b\end{cases}\Rightarrow\hept{\begin{cases}a=4\\b=4\\c=132\end{cases}}}\)
b) \(f\left(x\right)=4x^2+4x+132=4x^2+2x+2x+1+131=2x\left(2x+1\right)+\left(2x+1\right)+131\)
\(=\left(2x+1\right)^2+131\)
\(\left(2x+1\right)^2\ge0\forall x\Rightarrow f\left(x\right)\ge131\forall x\). Vậy \(f\left(x\right)\ne0\forall x\)