Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Cho \(x=1\) ta được:
\(\left(1+1+2\right)^{10}=a_0+a_1+a_2+...+a_{20}\)
\(\Rightarrow S_1=4^{10}\)
b. Cho \(x=2\) ta được:
\(\left(1+2+8\right)^{10}=a_0+a_1.2+a_2.2^2+...+a_{20}.2^{20}\)
\(\Rightarrow S_2=11^{10}\)
c.
\(\left(1+x+2x^2\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x+2x^2\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i.2^ix^{i+k}\)
Số hạng chứa \(\Rightarrow\left\{{}\begin{matrix}i+k=17\\0\le i\le k\le10\end{matrix}\right.\)
\(\Rightarrow\left(i;k\right)=\left(7;10\right);\left(8;9\right)\)
\(\Rightarrow a_{17}=C_{10}^{10}C_{10}^7.2^7+C_{10}^9.C_9^8.2^8=...\)
Xét \(x\ne1\)
\(\left(1+x+...+x^{10}\right)^{11}=a_0+a_1x+...+a_{110}x^{110}\)
\(\Leftrightarrow\left(x-1\right)^{11}\left(1+x+...+x^{10}\right)^{11}=\left(x-1\right)^{11}\left(a_1+a_1x+...+a_{110}x^{110}\right)\)
\(\Leftrightarrow\left(x^{11}-1\right)^{11}=\left(x-1\right)^{11}\left(a_0+a_1x+...+a_{110}x^{110}\right)\)
\(VP=\left(x-1\right)^{11}\left(a_0+a_1x+...\right)=\left(\sum\limits^{11}_{k=0}C_{11}^kx^k\left(-1\right)^{11-k}\right)\left(a_0+a_1x+...\right)\) (1)
Ta thấy tổng các hệ số của \(x^{11}\) trong khai triển (1) là:
\(C_{11}^0\left(-1\right)^{11}.a_{11}+C_{11}^1\left(-1\right)^{10}a_{10}+C_{11}^2\left(-1\right)^9a_9+...+C_{11}^{11}\left(-1\right)^0a_0\)
\(=-C_{11}^0a_{11}+C_{11}^1a_{10}-C_{11}^2a_9+...+C_{11}^{11}a_0=-T\)
\(VT=\sum\limits^{11}_{k=0}C_{11}^k\left(x^{11}\right)^k.\left(-1\right)^{11-k}\)
Hệ số của \(x^{11}\) trong khai triển trên là \(C_{11}^1\left(-1\right)^{10}=C_{11}^1=11\)
Mà \(VT=VP\Rightarrow-T=11\Rightarrow T=-11\)
Lời giải (Giao lưu_cách làm cấp 2)
\(f'\left(x\right)=6x^8-6x^5+6x^2-6x+6=6\left(x^8-x^5+x^2-x+1\right)=6A\)
Cần c/m : \(A>\left(x^8-x^5+x^2-x+1\right)...với\forall x\in R\)
Nếu \(\left|x\right|\ge1\Rightarrow\left\{{}\begin{matrix}x^8\ge x^5\\x^2\ge x\end{matrix}\right.\) \(\Rightarrow A=\left(x^8-x^5\right)+\left(x^2-x\right)+1>0\Rightarrow A>0\)(1)
Nếu \(\left|x\right|< 1\Rightarrow\left\{{}\begin{matrix}x^2>x^5\\1>x\end{matrix}\right.\)\(\Rightarrow A=\left(x^2-x^5\right)+\left(1-x\right)+x^8>0\Rightarrow A>0\)(2)
Từ (1) và (2) \(\Rightarrow A>0\forall x\in R\)=> dpcm
Lời giải:
\(C=\lim\limits_{x\to +\infty}\left[x\sqrt[n]{(1+\frac{a_1}{x})(1+\frac{a_2}{x})...(1+\frac{a_n}{x})}-x\right]\)
\(=\lim\limits_{x\to +\infty}x\left[\sqrt[n]{(1+\frac{a_1}{x})(1+\frac{a_2}{x}).....(1+\frac{a_n}{x})}-1\right]\)
\(=\lim\limits _{x\to +\infty}\frac{\sqrt[n]{(1+\frac{a_1}{x})(1+\frac{a_2}{x}).....(1+\frac{a_n}{x})}-1}{(1+\frac{a_1}{x})(1+\frac{a_2}{x})..(1+\frac{a_n}{x})-1}.\frac{(1+\frac{a_1}{x})(1+\frac{a_2}{x})...(1+\frac{a_n}{x})-1}{\frac{1}{x}}\)
\(=\lim\limits _{x\to +\infty}(A.B)=\lim\limits_{x\to +\infty}A.\lim\limits_{x\to +\infty}B\)
Với $A$. Đặt \(\sqrt[n]{\prod_{i=1}^n (1+\frac{a_i}{x})}=u\). \(x\to +\infty\Rightarrow \frac{a_i}{x}\to 0\Rightarrow 1+\frac{a_i}{x}\to 1\Rightarrow u\to 1\)
\(\lim\limits_{x\to +\infty}A=\lim\limits_{u\to 1}\frac{u-1}{u^n-1}=\lim\limits_{u\to 1}\frac{1}{u^{n-1}+...+1}=\frac{1}{n}\)
Với $B$
\(\lim\limits _{x\to +\infty}B=\lim\limits _{x\to +\infty}\frac{1+\frac{a_1+a_2+..+a_n}{x}+\frac{a_1a_2+a_2a_3+...+a_{n-1}a_n}{x^2}+....-1}{\frac{1}{x}}\)
\(=\lim\limits _{x\to +\infty}\left(a_1+a_2+...+a_n+\frac{a_1a_2+...+a_{n-1}a_n}{x}+...\right)=a_1+a_2+..+a_n\)
Do đó: $C=\frac{a_1+a_2+...+a_n}{n}$
Đáp án C
Chứng minh các biểu thức đã cho không phụ thuộc vào x.
Từ đó suy ra f'(x)=0
a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0
d,f(x)=\(\frac{3}{2}\)=>f'(x)=0
woa ai ni