Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:
\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)
$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)
Từ $(1);(2)$ suy ra đpcm.
Bài 2:
Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:
$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)
a) Ta có: \(\dfrac{a}{c}=\dfrac{c}{b}\Rightarrow ab=c^2\)
Khi đó ta có: \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+ab}{b^2+ab}=\dfrac{a\left(a+b\right)}{b\left(a+b\right)}=\dfrac{a}{b}\left(đpcm\right)\)
câu b: https://hoc24.vn/hoi-dap/question/559910.html
Ta có:
\(\dfrac{a}{c}=\dfrac{c}{b}\)
\(\Rightarrow ab=c^2\left(1\right)\)
Thay (1) vào \(\dfrac{a^2+c^2}{b^2+c^2}\) ta được
\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+ab}{b^2+ab}=\dfrac{a\left(a+b\right)}{b\left(a+b\right)}=\dfrac{a}{b}\)
\(\RightarrowĐpcm\)
b) Ta có: ab = c2 ( Theo a ) (1)
Thay (1) vào biểu thức \(\dfrac{b^2-a^2}{a^2+c^2}\) ta được:
\(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b^2-ab+ab-a^2}{a^2+ab}=\dfrac{b\left(b-a\right)+a\left(b-a\right)}{a\left(a+b\right)}=\dfrac{\left(a+b\right)\left(b-a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\)
\(\RightarrowĐpcm\)
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a^2+c^2}{b^2+d^2}\)
=>\(\dfrac{a}{b}=\dfrac{a^2+c^2}{b^2+d^2}\) (đpcm)
Bài 1:
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
\(\dfrac{a}{c}=\dfrac{c}{b}\\ \Rightarrow ab=c^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+ab}{b^2+ab}\\ =\dfrac{a\left(a+b\right)}{b\left(a+b\right)}\\ =\dfrac{a}{b}\)
Đặt \(\dfrac{a}{c}=\dfrac{c}{b}=k\)
\(\Rightarrow a=c.k;c=b.k\)
\(\Rightarrow\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{\left(c.k\right)^2+\left(b.k\right)^2}{b^2+\left(b.k\right)^2}=\dfrac{k^2.\left(c^2+b^2\right)}{b^2.\left(k^2+1\right)}\)
\(=\dfrac{k^2.\left[\left(b.k^2\right)+b^2\right]}{b^2.\left(k^2+1\right)}=\dfrac{k^2.\left[b^2.\left(k^2+1\right)\right]}{b^2.\left(k^2+1\right)}=k^2\left(1\right)\)
\(\dfrac{a}{b}=\dfrac{c.k}{b}=\dfrac{b.k^2}{b}=k^2\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\left(đpcm\right)\)
Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}\Rightarrow\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}=\dfrac{a^2+b^2}{b^2+c^2}\) (1)
\(\dfrac{a^2}{b^2}=\dfrac{a}{b}.\dfrac{b}{c}=\dfrac{a}{c}\) (2)
Từ (1), (2) \(\Rightarrow\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{c}\Rightarrowđpcm\)
Đề của bạn sai nhé!
Cách 1:
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\b=ck\end{matrix}\right.\)
Ta có:
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{\left(bk\right)^2+b^2}{\left(ck\right)^2+c^2}=\dfrac{b^2\left(k^2+1\right)}{c^2\left(k^2+1\right)}=\dfrac{b}{c}\left(1\right)\)
\(\dfrac{a}{b}=\dfrac{bk}{ck}=\dfrac{b}{c}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{b}\)(đpcm)
Từ \(\dfrac{a}{c}=\dfrac{c}{b}\Rightarrow c^2=ab\)
Khi đó \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+ab}{b^2+ab}=\dfrac{a\left(a+b\right)}{b\left(a+b\right)}=\dfrac{a}{b}\)
\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\Rightarrow\dfrac{b^2+c^2}{a^2+b^2}=\dfrac{b}{a}\)
Từ \(\dfrac{b^2+c^2}{a^2+c^2}=\dfrac{b}{a}\Rightarrow\dfrac{b^2+c^2}{a^2+c^2}-1=\dfrac{b}{a}-1\) hay \(\dfrac{b^2+c^2-a^2-c^2}{a^2+c^2}=\dfrac{b-a}{a}\)
Vậy \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)
ta co \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\Rightarrow\dfrac{b^2+c^2}{a^2+c^2}=\dfrac{b}{a}\Rightarrow\dfrac{b^2+c^2}{a^2+c^2}-1=\dfrac{b}{a}-1\Rightarrow\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)
Vì \(\dfrac{a}{c}=\dfrac{c}{b}\Rightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{c}{b}\right)^2\Rightarrow\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}\)
Theo t/chất dãy tỉ số = nhau, ta có:
\(\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{c^2+b^2}\)\(\Rightarrow a\left(c^2+b^2\right)=b\left(a^2+c^2\right)\Rightarrow ac^2+ab^2=ba^2+bc^2\)
\(\Rightarrow ab^2=ba^2+bc^2-ac^2\)
\(\Rightarrow ab^2-a^3=\left(ba^2+bc^2\right)-\left(a^3+ac^2\right)\)
\(\Rightarrow a\left(b^2-a^2\right)=\left(b-a\right)\left(a^2+c^2\right)\)
\(\Rightarrow\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)
Vậy...
Bài này đúng á, mk học rồi, chúc p hk tốt