K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

Đặt \(\frac{AH}{40}=\frac{AM}{41}=a\Rightarrow AH=40a;AM=41a\)

=> HM=9a và BC=2AM=82a

=> HC=9a+41a=50a

Mà \(\Delta ABC\infty HAC\Rightarrow\frac{AB}{AC}=\frac{HA}{HC}=\frac{40A}{50A}=\frac{4}{5}\)

vẬY ....

^_^

27 tháng 6 2018

Xét tam giác ABC vuông tại A có AM là trung tuyến => AM = BC/2

=> BC = 2.AM = 2.41 = 82

Tam giác ABC vuông tại A nên : S ABC = AB.AC/2

Lại có : AH là đường cao nên S ABC = AH.BC/2

=> AB.AC/2 = AH.BC/2

=> AB.AC = AH.BC = 40.82 = 3280

Áp dụng định lý pitago trong tam giác ABC vuông tại A ta có :

AB^2+AC^2 = BC^2 = 82^2 = 6724

<=> (AB+AC)^2 = AB^2+AC^2+2.AB.AC = 6724+2.3280 = 13284

<=> AB+AC = 18\(\sqrt{41}\)

(AC-AB)^2 = AB^2+AC^2-2.AB.AC = 6724-2.3280 = 164

<=> AC-AB = 2\(\sqrt{41}\) ( VÌ AC > AB )

=> AB = 8\(\sqrt{41}\);AC=10\(\sqrt{41}\)

=> AB/AC = \(\dfrac{8\sqrt{41}}{10\sqrt{41}}=\dfrac{4}{5}\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2018

Hỏi đáp Toán

24 tháng 8 2017

ban tinh AM=\(\frac{\sqrt{41}}{2}\) ;\(AB^2+AC^2=41\)

tinh ra AH=\(\frac{20\sqrt{41}}{41}\)

theo he thuc luong trong tam giac vuong

suy ra \(AB\cdot AC=20\)

\(AB=\frac{20}{AC}\)

thay vao AB^2+AC^2=41

ta co

\(\frac{400}{AC^2}+AC^2=41\)<=> AC=4

AB=5

do AB;AC binh dang nen AB=4; BC=5 

vay (AB;AC)=(4;5);(5:4)

\(\frac{AH}{AM}=\frac{40}{41}\)

=>\(\frac{AH}{40}=\frac{AM}{41}=k\)

=>\(AH=40k\)

\(AM=41k\)

Tam giác ABC vuông tại A, AM là đường trung tuyến

=> \(AM=MC=\frac{BC}{2}=\frac{\sqrt{41}}{2}\)

=> 41k=\(\frac{\sqrt{41}}{2}\)=> k=\(\frac{\sqrt{41}}{82}\)

AH=40k=\(\frac{\sqrt{41}}{82}.40=\frac{20\sqrt{41}}{41}\)

Áp dụng định lí Pytago vào tam giác ABH ta có:

\(HM=\sqrt{AM^2-AH^2}=\sqrt{\left(\frac{\sqrt{41}}{2}\right)^2-\left(\frac{20\sqrt{41}}{41}\right)^2}=\frac{9\sqrt{41}}{82}\)

HC =HM+MC=\(\frac{\sqrt{41}}{2}+\frac{9\sqrt{41}}{82}=\frac{25\sqrt{41}}{41}\)

HB=BC-HC=\(\frac{16\sqrt{41}}{41}\)

Áp dụng định lí Pytago ta sẽ tính được

AC=5

AB=4

4 tháng 8 2017

A B C E F H M K I

A. Ta có \(\frac{AH}{AC}=\frac{3}{5}\Rightarrow AC=\frac{5}{3}AH;BC=\frac{AB.AC}{AH}=\frac{AB.5AH}{3.AH}=\frac{5}{3}AB\)

Theo định lí Pitago ta có \(AB^2+AC^2=BC^2\Rightarrow15^2+\frac{25}{9}AH^2=\frac{25}{9}.15^2\Rightarrow AH^2=144\Rightarrow AH=12\left(cm\right)\)

\(\Rightarrow AC=\frac{5}{3}.12=20\Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

Theo hệ thức lượng trong tam giác vuông ta có \(BH=\frac{AB^2}{AC}=9;CH=\frac{AC^2}{BC}=16\left(cm\right)\)

b. Theo hệ thức lượng trong tam giác vuông ta có \(BE=\frac{BH^2}{AB}=5,4\left(cm\right);CF=\frac{CH^2}{AC}=12,8\left(cm\right)\)

Ta có \(AH^3=12^3=1728\)

\(BC.BE.CF=25.5,4.12,8=1728\)

Vậy \(AH^3=BC.BE.CF\)

c. Ta kẻ \(CK⊥BC\)tại M \(\Rightarrow\)yêu cầu bài toán \(\Leftrightarrow\)chứng minh M là trung điểm BC 

Ta gọi I là giao điểm của AH và EF

Xét \(\Delta AKI\)và \(\Delta AHM\)

có \(\hept{\begin{cases}\widehat{K}=\widehat{H}=90^0\\\widehat{Achung}\end{cases}\Rightarrow\Delta AKI~\Delta AHM\left(g-g\right)}\)

\(\Rightarrow\widehat{AIF}=\widehat{AMB}\)

Ta chứng minh được \(AFHE\)là hình chữ nhật vì \(\widehat{F}=\widehat{A}=\widehat{E}=90^0\)

\(\Rightarrow\widehat{IAF}=\widehat{IFA}\)\(\Rightarrow\widehat{FMA}=180^0-2\widehat{MAF}\left(1\right)\)

Lại có \(\widehat{HBA}=\widehat{IAF}\Rightarrow\widehat{AMH}=180^0-2\widehat{HBA}\)

\(\Rightarrow\Delta AMB\)cân tại  I \(\Rightarrow MA=MB\)

Tương tự chứng minh được \(MA=MC\)

Vậy M là trung điểm BC hay ta có đpcm 

21 tháng 7 2020

vì tam giác ABC vuông tại A trung tuyến AD nên AD=DB=DC=1/2 BC=1/2 *32=16

Ta có: \(\frac{AH}{AD}=\frac{3}{4}\Leftrightarrow\frac{AH}{16}=\frac{3}{4}\)

\(\Rightarrow AH=\frac{3\cdot16}{4}=12\)

Lại có: \(AH^2=BH\cdot CH=\left(BD-HD\right)\left(DC+HD\right)\)\(=\left(16-HD\right)\left(16+HD\right)=16^2-HD^2\)

\(\Leftrightarrow12^2=16^2-HD^2\Rightarrow HD=\sqrt{16^2-12^2}=\sqrt{112}=4\sqrt{7}\)

Diện tích AHD=\(\frac{1}{2}\cdot AH\cdot HD=\frac{1}{2}\cdot12\cdot4\sqrt{7}=24\sqrt{7}\)

AH
Akai Haruma
Giáo viên
18 tháng 7 2019

Lời giải:

Giả sử $AB< AC$
Vì $AM$ là đường trung tuyến ứng với cạnh huyền $BC$ nên \(AM=\frac{BC}{2}\)

\(\Rightarrow \frac{AH}{\frac{BC}{2}}=\frac{AH}{AM}=\frac{40}{41}\Rightarrow \frac{AH}{20}=\frac{BC}{41}\).

Đặt \(\frac{AH}{20}=\frac{BC}{41}=a\Rightarrow AH=20a; BC=41a\)

\(S_{ABC}=\frac{AB.AC}{2}=\frac{AH.BC}{2}\Rightarrow AB.AC=AH.BC=20a.41a=820a^2(1)\)

Áp dụng định lý Pitago:

\(AB^2+AC^2=BC^2=(41a)^2(2)\)

Từ \((1);(2)\Rightarrow (AB+AC)^2=(41a)^2+2.820a^2=3321a^2\)

\(\Rightarrow AB+AC=9\sqrt{41}a(3)\)

Từ \((1);(3)\) áp dụng định lý Vi-et đảo suy ra $AB,AC$ là nghiệm của PT \(x^2-9\sqrt{41}ax+820a^2=0\)

\(\Leftrightarrow (x-5\sqrt{41}a)(x-4\sqrt{41}a)=0\)

\(\Rightarrow AB=4\sqrt{41}a; AC=5\sqrt{41}a\)

\(\Rightarrow \frac{AB}{AC}=\frac{4}{5}\)

Đảo lại nếu $AB>AC$ thì \(\frac{AB}{AC}=\frac{5}{4}\)

AH
Akai Haruma
Giáo viên
18 tháng 7 2019

Hình vẽ:
Một số hệ thức về cạnh và góc trong tam giác vuông