Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B F K D I E O H
a) ta có góc FAC= góc KAC:2=90:2=45 ( AF la tìa phân giác góc KAC , đường chéo hình vuông ACFK)
góc DAB = góc BAE:2=90:2=45 ( AD là tia phân giác góc BAE , đường chéo hình vuông ABDE)
ta có góc FAD= góc FAC+ góc CAB+ góc DAB =45+90+45=180
-> F,A,D thằng hàng
b)
ta có góc AKC= góc FKA:2=90:2=45 ( KC la tìa phân giác góc FKA , đường chéo hình vuông ACFK)
góc ABE = góc ABD:2=90:2=45 ( BE là tia phân giác góc ABD , đường chéo hình vuông ABDE)
==> góc AKC= góc ABE
mà 2 góc nằm ở vi trí so le trong nên KC//BE
-> tứ giác CKEB là hình thang
ta có
AK=AC ( ACFK là hình vuông)
AB=AE ( ABDE là hình vuông)
=> AK+AB=AC+AE
=> BK = CE
Xét hình thang CKEB ta có
BK= CE (cmt)
-> hình thang CKEB là hình thang cân ( hình thang có 2 đường chéo bang nhau)
c)Xét tam giác ACB và tam giác AKE ta có
AC=AK ( ACFK là hình vuông)
AB=AE ( ABDE là hình vuông)
góc BAC= góc KAE (=90)
-> tam giác ACB= tam giác AKE (c-g-c)
-> góc ACH = góc AKI (2 góc tương ứng)
Xét tam giác KHE vuông tại A ta có
AI là đường trung tuyến ứn với cạnh huyền KE ( I là trung điểm KE)
-> AI = 1/2 KE
mà KI =1/2 KE ( I là trung điểm KE)
nên tam giác AIK cân tại I
-> góc IKA= góc IAK
mà góc ACH = góc AKI (cmt)
nên góc IAK = góc ACH
ta có
góc ACH + góc CAH =90 ( tam giác AHC vuông tại H)
góc ACH = góc IAK (cmt)
-> góc IAK+ góc CAH =90
ta có góc IAH= góc IAK + góc CAH + góc KAC= 90+90=180
-> I,A,H thẳn hàng
-> AH đi qua trung điểm I của KE
d) Gọi O là giao điểm FK và ED
Xét tứ giác KOEA ta có
góc KAE=90 (gt)
góc AKO=90 ( AK vuông góc FO tại K)
góc AEO= 90 (AE vuông góc OD tại E)
-+> tứ giác KOEA là hcn (tứ giác có 3 góc vuông)
-> hai đường chéo KE và OA cắt nhau tại trung diem mổi đường
mà I là trung điểm KE (gt)
nên I là trung diem OA
-> I,O,A thẳng hàng
suy ra FK. AH, DE dong quy tại O
a: Ta có: ABDE là hình vuông
=>AD là phân giác của góc BAE và \(\widehat{BAE}=\widehat{BDE}=\widehat{DEA}=\widehat{DBA}=90^0\)
AD là phân giác của góc BAE
=>\(\widehat{BAD}=\widehat{EAD}=\dfrac{\widehat{BAE}}{2}=45^0\)
Ta có: ACFK là hình vuông
=>AF là phân giác của góc KAC và \(\widehat{CAK}=\widehat{AKF}=\widehat{CFK}=\widehat{ACF}=90^0\)
\(\widehat{BAK}=\widehat{BAC}+\widehat{CAK}\)
\(=90^0+90^0=180^0\)
=>B,A,K thẳng hàng
AF là phân giác của góc CAK
=>\(\widehat{KAF}=\widehat{CAF}=\dfrac{1}{2}\cdot90^0=45^0\)
=>\(\widehat{DAB}=\widehat{FAK}\)(=45 độ)
mà \(\widehat{FAK}+\widehat{BAF}=180^0\)(hai góc kề bù)
nên \(\widehat{DAB}+\widehat{BAF}=180^0\)
=>\(\widehat{DAF}=180^0\)
=>D,A,F thẳng hàng
b: ta có: \(\widehat{BAC}+\widehat{BAE}=\widehat{EAC}\)
=>\(\widehat{EAC}=90^0+90^0=180^0\)
=>E,A,C thẳng hàng
Xét ΔABE vuông tại A và ΔAKC vuông tại A có
\(\dfrac{AB}{AK}=\dfrac{AE}{AC}\)
Do đó: ΔABE đồng dạng với ΔAKC
=>\(\widehat{ABE}=\widehat{AKC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BE//KC
Ta có: BK=BA+AK
EC=EA+AC
mà AK=AC và BA=EA
nên BK=EC
Xét tứ giác BEKC có BE//KC và BK=EC
nên BEKC là hình thang cân
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh