K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

a)
^MAC = ^MCA = a ---> ^AMH = ^MAC + ^MCA = 2a
sin2a = sinAMH = AH/MA = 2AH/BC = 2(AH/AC).(AC/BC) = 2 sina.cosa

b)
1+cos2a = 1+cosAMH = 1+MH/MA = (MA+MH)/MA = CH/MA = 2CH/BC =
= 2 (CH/AC).(AC/BC) = 2 cosa.cosa = 2 cos^2 (a)

c)
1-cos2a = 1-cosAMH = 1-MH/MA = (MA-MH)/MA = BH/MA = 2BH/BC =
= 2 (BH/AB).(AB/BC) = 2 sinBAH.sinACB = 2 sin^2 (a)
(^BAH = ^ACB = a vì chúng cùng phụ với góc ABC)

7 tháng 7 2016

A B C M H

Ta có : \(\left(sin\alpha+cos\alpha\right)^2=sin^2\alpha+cos^2\alpha+2sin\alpha.cos\alpha\) (1)

Lại có : \(sin^2\alpha=\frac{AB^2}{BC^2}\) ; \(cos^2\alpha=\frac{AC^2}{BC^2}\) \(\Rightarrow sin^2\alpha+cos^2\alpha=\frac{AB^2+AC^2}{BC^2}=\frac{BC^2}{BC^2}=1\) (2)

Kẻ đường cao AH (H thuộc BC)

Ta sẽ chứng minh \(sin\beta=2sin\alpha.cos\alpha\)

Xét tam giác vuông HMA có : \(sin\beta=\frac{AH}{AM}\) 

Lại có \(AH=\frac{AB.AC}{BC}\) ; \(AM=\frac{BC}{2}\) \(\Rightarrow sin\beta=\frac{\frac{AB.AC}{BC}}{\frac{BC}{2}}=\frac{2AB.AC}{BC^2}=2.\frac{AB}{BC}.\frac{AC}{BC}=2sin\alpha.cos\alpha\)(3)

Từ (1) , (2) , (3) ta có điều phải chứng minh.

 

24 tháng 8 2020

\(\Delta\)ABC vuông tại A có AB<AC. 

25 tháng 8 2020

A B C M H

Kẻ đường cao AH ; Vì AB < AC => BH < HC=> H thuộc BM 

Ta có: \(\sin\alpha=\frac{AB}{BC};\cos\alpha=\frac{AC}{BC};\sin\beta=\frac{AH}{AM}\)

=> \(\left(\sin\alpha+\cos\alpha\right)^2=\left(\frac{AB}{BC}+\frac{AC}{BC}\right)^2=\frac{AB^2}{BC^2}+\frac{AC^2}{BC^2}+\frac{2AB.AC}{BC^2}=1+\frac{2AB.AC}{BC^2}\)

Mà theo hệ thức lượng: \(AB^2=BC.BH;AC^2=CB.CH\)

=> \(\frac{2AB.AC}{BC^2}=2.\frac{AB}{BC}.\frac{AC}{BC}=\frac{2BH.CH}{AB.AC}=\frac{2AH^2}{AB.AC}\)

Ta cần chứng minh: \(\frac{2AH^2}{AB.AC}=\frac{AH}{AM}\Leftrightarrow2AH.AM=AB.AC\Leftrightarrow AH.BC=AB.AC\)đúng 

Vậy \(1+\frac{2AB.AC}{BC^2}=1+\frac{AH}{AM}\)

=> Có điều cần phải cm

27 tháng 7 2017

2/ \(\frac{sin^3a-cos^3a}{sin^3a+cos^3a}=\frac{tan^3a-1}{tan^3a+1}=\frac{3^3-1}{3^3+1}=\frac{13}{14}\) (chia tử mẫu cho cos3a)