Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)
nên \(BC\cdot AH=AB\cdot AC\)
2:
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot BC\)
A B C M K E H 1 2 3 1 1 2 1 2 3
Do ΔABC cân nên AM vừa là đường trung tuyến vừa là đường trung trực với cạnh BC
=> ΔAMB và ΔAMC vuông cân và bằng nhau
=> Góc C1= Góc A1
Xét ΔABH và ΔCAK có
BA=AC( ΔABC cân)
Góc B1=Góc A3 ( cùng phụ với góc BAK)
Đều _|_ AK
=> ΔCAK=ΔABH ( cạnh huyền góc nhọn)
=> Góc BAK = Góc CAK
Mà Góc C1= Góc A1
=> Góc A2= Góc C2
Xét 2 ΔAHM và ΔCKM có
AM=MC ( đường trung tuyến ứng với cạnh huyền)
Góc A2= Góc C2 (cmt)
AH=CK (vì ΔCAK=ΔABH)
=> ΔAHM = ΔCKM (c.g.c)
=>HM=MK=> ΔMHK cân tại M (1)
Ta lại có Góc M1= Góc M2
mà Góc M1+góc M3=90o
=> Góc M2+ Góc M3 = Góc HMK =90o (2)
Từ (1) Và (2) => ΔMHK vuông cân tại M
1,Ta có: Tam giác ABC là tam giác vuông cân
=> AB=AC
Mặt khác có:
mà => Lại có:Tam giác HBA vuông tại H và tam giác KAC vuông tại K
Từ ;; => tam giác HBA = tam giác KAC﴾Ch‐gn﴿
=>BH=AK﴾đpcm﴿
2,Ta có:AM là trung tuyến của tam giác cân => AM cũng là đường cao
Mặt khác:
mà => Tam giác AHM=tam giác CKM ﴾c.g.c﴿ vì
Có:AM=MC﴾AM là trung tuyến ứng với cạnh huyền﴿
AH=CK ﴾câu a﴿
=>MH=MK và
Ta có: ﴾AM là đường cao﴿
Từ ; => Góc HMK vuông
Kết hợp ;=> MHK là tam giác vuông cân
Bạn tự vẽ hình nhé!
a) Ta có:
BE=BH ⇒△BEH cân tại B⇒ ∠E=1800−∠EBH2=∠ABC2=∠C1800−∠EBH2=∠ABC2=∠C
Lại có:
∠BHE=∠CHD(đối đỉnh)
⇒∠E=∠CHD mà ∠E=∠C (cmt)
⇒∠CHD=∠C⇒△HDC cân tại D
Ta có:
∠AHD+∠DHC=900
∠DHC=∠DCH
⇒∠AHD+∠DCH=900 (1)
mà ∠ACH+∠CAH=900 hay ∠DCH+∠CAH=900 (2)
Từ (1) và (2)⇒∠AHD=∠CAH hay ∠AHD=∠DAH
⇒△ADH cân tại D
b)Xét △ABH và △AB'H có:
AH chung
∠AHB=∠AHB'(=900)
HB=HB' (gt)
⇒△ABH=△AB'H(cgc)
⇒AB=AB'(2 cạnh tương ứng)
⇒△ABB' cân tại A
c)△ABH=△AB'H (câu b)
⇒∠HBA=∠HB'A (2 góc tương ứng)=2∠C
Ta lại có:
∠HB'A=∠C+∠B'AC
⇒2∠C=∠C+∠B'AC ⇒∠B'AC=∠C
⇒△AB'C cân tại B'
d)△AB'C cân tại B' (câu c)
⇒B'A=B'C (3)
△ABH=△AB'H (câu b)
⇒AB=AB' (2 cạnh tương ứng) (4)
Từ (3) và (4) ⇒AB=B'C
Ta có:
BH=B'H; BH=BE⇒B'H=BE
AB=B'C ;BE=B'H ⇒AB+BE=B'C+B'H
⇒AE=CH