\(\Delta\)ABC đều. Chứng minh rằng: CosA+CosB+CosC=\(\frac{3}{2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2020

\(\Delta ABC\) đều \(\Rightarrow A=B=C=60^0\)

\(\Rightarrow cosA+cosB+cosC=3cos60^0=\frac{3}{2}\)

28 tháng 11 2016

a) A C E F B D

\(cosA=\sqrt{cosA^2}=\sqrt{\frac{AF}{AB}\cdot\frac{AE}{AC}}=\sqrt{\frac{AF}{AC}\cdot\frac{AE}{AB}}\le\frac{\frac{AF}{AC}+\frac{AE}{AB}}{2}\)(BDT AM-GM)

Tương tự ta có: 

\(cosB\le\frac{\frac{BE}{BA}+\frac{BD}{BC}}{2};cosC\le\frac{\frac{CD}{CB}+\frac{CF}{CA}}{2}\)

\(\Rightarrow VT\le\frac{\frac{CF+AF}{AC}+\frac{AE+BE}{AB}+\frac{BD+DC}{BC}}{2}=\frac{1+1+1}{2}=\frac{3}{2}\)

28 tháng 11 2016

Cách khác

CHo Tam giác ABC, M là 1 điểm bất kì nằm trong tam giác

Đặt x1=MA;x2=MB;x3=MC và p1;p2;p3 lần lượt là khoảng cách từ M đến BC,CA,AB tương ứng. Khi đó ta có BĐT \(x_1+x_2+x_3\ge2\left(p_1+p_2+p_3\right)\)

Vận dụng giải bài trên:

Gọi O,R là tâm và bán kính đg tròng ngoại tiếp Tam giá ABC

Gọi M,N,P lần lượt là trung điểm của cạnh AB,BC,CA

Dễ thấy \(^{\widehat{A}=\widehat{MOB}}\).Do đó:

\(cosA=cos\left(\widehat{MOB}\right)=\frac{OM}{OB}=\frac{OM}{R}\)

tương tự \(cosB=\frac{ON}{R};cosC=\frac{OP}{R}\)

Do đó \(cosA+cosB+cosC=\frac{OM+ON+OP}{T}\le\frac{1}{2}\left(\frac{OA+OB+OC}{R}\right)=\frac{3}{2}\) (BĐT erdos-mordell )

Dấu "=" khi tam giác ABC đều 

24 tháng 10 2016

Giả thiết của dề bài chưa đúng, mình sửa lại thành \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC.cosA}\)

Đặt \(a=\sqrt{cosA},b=\sqrt{cosB},c=\sqrt{cosC}\)

Suy từ giả thiết : 

\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\)

Vậy ta có \(\sqrt{cosA}=\sqrt{cosB}=\sqrt{cosC}\Rightarrow\hept{\begin{cases}cosA=cosB=cosC\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}}\)

\(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

\(\Rightarrow\Delta ABC\) là tam giác đều.

15 tháng 4 2017

Ta có bất phương trình tương đương:

\(\Leftrightarrow x-2\left(\cos B+\cos C\right)x+2-2\cos A\ge0\)

Ta có:

\(\Delta'=\left(\cos B+\cos C\right)^2-2+2\cos A\)

\(=4\cos^2\left(\frac{B+C}{2}\right).\cos^2\left(\frac{B-C}{2}\right)-4\sin^2\left(\frac{A}{2}\right)\)

 \(=4\sin^2\left(\frac{A}{2}\right)\left(\cos^2\left(\frac{B-C}{2}\right)-1\right)\le0\)

Bên cạnh đó ta có hệ số \(a=1>0\)

Từ đây ta suy ra điều phải chứng minh là đúng.

AH
Akai Haruma
Giáo viên
27 tháng 7 2020

Lời giải:

Theo công thức lượng giác sin, cos, tan, cot ta có:

$\cos B=\frac{AB}{BC}$

$\cos C=\frac{AC}{BC}$

$\Rightarrow \frac{\cos B}{\cos C}=\frac{AB}{BC}: \frac{AC}{BC}=\frac{AB}{AC}$

Ta có đpcm.