Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
CE là đường trung tuyến
AD là đường trung tuyến
CE cắt AD tại G
Do đó; G là trọng tâm
=>AG=2GD
=>GD=1/2GM
hay D là trung điểm của GM
=>DG=DM
Xét ΔBDM và ΔCDG có
BD=CD
góc BDM=góc CDG
DM=DG
Do đóΔBDM=ΔCDG
b: BM=CG
mà CG=2/3CE
nên BM=2/3CE
A B C D E G M
A)VÌ AD LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)
MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)
\(\Rightarrow AG=2GD\)
MÀ \(AG=GM\)( G LÀ TRUNG ĐIỂM CỦA AM )
\(\Rightarrow GM=2GD\)
NÊN D LÀ TRUNG ĐIỂM CỦA GM
\(\Rightarrow GD=DM\left(ĐPCM\right)\)
XÉT \(\Delta BDM\)VÀ\(\Delta CDG\)CÓ
\(BD=CD\left(GT\right)\)
\(\widehat{BDM}=\widehat{CDG}\)( ĐỐI ĐỈNH)
\(GD=DM\left(CMT\right)\)
=>\(\Delta BDM\)=\(\Delta CDG\)( C-G-C)
B)
VÌ CE LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)
MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)
\(\Rightarrow CG=\frac{2}{3}CE\)
THAY\(CG=\frac{2}{3}.6=4\left(CM\right)\)
MÀ \(\Delta BDM\)=\(\Delta CDG\)( CMT)
=>\(BM=CG=4\left(CM\right)\)
C)
TA CÓ
\(AB< DB+DA\)
\(AC< DC+DA\)
CỘnG VẾ THEO VẾ
\(\Rightarrow AB+AC< 2AD+DB+DC\)
GIẢI TIẾP LÀ RA
a) tam giác ABC vuông tại A
=> AB2 + AC2 = BC2 (định lý py-ta-go)
=> 92 + AC2 = 152
=> AC2 = 225 - 81
=> AC2 = 144 => AC = \(\sqrt{144}=12cm\)
t i c k đúng nhé
a) trong tam giác ABC có: AB < AC < BC ( 9 < 12 < 15)
=> góc C < góc B < góc A (định lý)
a) Xét tam giác ABM và tam giác ACM, ta có:
AB=AC(gt)
BM=CM(gt)
AM: cạnh chung
Do đó: tam giác ABM = tam giác ACM(c.c.c)
Vậy: Góc AMB = Góc AMC
Mà góc AMB + góc AMC = 180 độ =>
Góc AMB = Góc ACM = 180 độ / 2 = 90 độ
Vậy AM vuông góc với BC
b) Xét tam giác AMD và tam giác AME, ta có:
AD=AE (gt)
Góc DAM = Góc EAM ( theo câu a, cặp góc tương ứng )
AM: cạnh chung
Do đó: Tam giác AMD = tam giác AME (c.g.c)
c) Ta thấy: Góc EDM + Góc KDM = 180 độ ( kề bù )
Vậy ba điểm D,E,K thẳng hàng
=> tam giác ABC cân tại A
Xét ABM và ACM có:
AM chung
AB = AC
A1 = A2 (tam giác ABC cân tại A)
Vậy tam giác ABM = ACM
M1 = M2 ; M1 + M2 = 180 (2 góc kề bù)
=> M1 = M2 = 90
=> AM vuông góc BC