K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
16 tháng 1 2018
A B C H K M
a)
Xét tam giác ABH và tam giác ACK có
AHB=AHC=900
BAH=ACK ( cùng phụ với CAK)
=> tam giác ABH= tam giác ACK
=> AH=CK
b)
tam giác ABH= tam giác ACK
=> AH=CK và AK=BH
=>HK=AH+AK=BH+CK
Vậy HK=BH+CK
c)
5 tháng 2 2018
Tham khảo ở đây :
https://olm.vn/hoi-dap/question/31121.html
a 1 2 1 H B M A K C
a) Xét hai tam giác vuông \(\Delta AHB\)và \(\Delta CKA,\)ta có:
AB = AC, giả thiết
\(\widehat{A}_1=180^o-\widehat{BAC}-\widehat{A}_2=180^o-90^o-\left(90^o-\widehat{C_1}\right)=\widehat{C_1}\)
Suy ra:
\(\Delta AHB=\Delta CKA\)(cạnh huyền và góc nhọn)
\(\Rightarrow\widehat{HBA}=\widehat{A}_2,BH=AK\)và \(AH=CK,đpcm\)
b) Ta có:
\(HK=AK+AH=BH+CK,đpcm\)
c) Xét hai tam giác \(\Delta MHB\)và\(\Delta MKA\), ta có:
BH = AK theo kết quả a)
\(\widehat{HBM}=\widehat{HBA}+\widehat{ABM}=\widehat{A_2}+45^o=\widehat{KAM}\)
\(MB=\frac{1}{2}BC=MA,\)trung tuyến thuộc cạnh huyền
Suy ra:
\(\Delta MHB=\Delta MKA\left(c.g.c\right)\)
Từ đó ta có:
\(MH=MK\Rightarrow\Delta MHK\)cân.
\(\widehat{BHM}=\widehat{AMK}\Rightarrow\widehat{HMK}=\widehat{HMA}+\widehat{AMK}=\widehat{HMA}+\widehat{BMH}=\widehat{BMA}=90^o\)
Vậy, \(\Delta MHK\)vuông cân.