K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2021

Cần ý d :>

7 tháng 11 2016

Để cm ˆACE=BCF^, ta gấp đôi các góc trên bằng cách vẽ H đối xứng với E qua AC, vẽ K đối xứng với F qua BC. Cần phải cm ˆHCE=FCK^. Muốn vậy ta sẽ cm ˆHCF=ECK^ bằng cách cm △HCF=△ECK
2 tam gíác này đã có HC=EC, CF=CK. Cần cm FH=KE.
Ta tạo ra 1 đoạn thẳng trung gian: Vẽ I đối xứng với E qua AB. Lần lượt cm:
△FAH=△FAI(c-g-c) suy ra FH=FI, △IBF=△EBK(c-g-c) suy ra FI=EK

2 tháng 7 2019

A B C D M N F E G H I K

Gọi G,H,K lần lượt là trung điểm các cạnh AB,CD,AC. Giao điểm của MG và NH là I.

Ta thấy \(\Delta\)CDN cân tại N có H là trung điểm cạnh CD => NH vuông góc CD => IH vuông góc CD

Mà EK là đường trung bình trong \(\Delta\)ACD nên IH vuông góc EK (1)

Dễ dàng chứng minh tứ giác EHFG là hình thoi => EF vuông góc GH (2)

Từ (1) và (2) suy ra ^IHG = ^KEF (Vì 2 góc này cùng phụ với góc hợp bởi EF và IH)

Tương tự ^IGH = ^KFE. Từ đó \(\Delta\)GIH ~ \(\Delta\)FKE (g.g) => \(\frac{IG}{IH}=\frac{KF}{KE}=\frac{AB}{CD}=\frac{BG}{CH}\)

Ta lại có \(\Delta\)MGB ~ \(\Delta\)NHC (g.g)  => \(\frac{BG}{CH}=\frac{MG}{NH}\). Do vậy \(\frac{IG}{IH}=\frac{MG}{NH}\)

Áp dụng ĐL Thales đảo vào \(\Delta\)MIN ta được GH // MN

Mà EF vuông góc GH (cmt) nên EF vuông góc MN (đpcm).