Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
ta có: Tam giác ABC vuông tại A (gt)
=> AB^2+AC^2=BC^2
6^2+8^2 =BC^2
36+64 =BC^2
100 =BC^2
=>BC=10cm
Tam giác ABC vuông tại A có Am là đg trung tuyến
=> AM=BC/2=10/2=5cm
HÌNH VẼ THÌ BẠN TỰ VẼ NHÉ, HÌNH NÀY DỄ VẼ MÀ NHỈ.
Câu a bạn V (Team BTS) làm rồi nên mình chỉ làm các câu còn lại thôi nhé.
b) Vì DM vuông góc AB, AC vuông góc AB (gt) => DM // AC.
=> DMCA là hình thang mà góc ADM = góc DAC = 90 độ.
Do đó ADMC là hình thang vuông.
c) Xét tam giác ABC ta có: DM // AC (cmt), M là trung điểm BC (AM là trung tuyến)
=> D là trung điểm của AB.
Tứ giác AEBM có AB và EM là hai đường chéo cắt nhau tại trung điểm D. => AEBM là hình bình hành. (1)
Lại xét tam giác AMB cân tại M (MA=MB) có MD là trung tuyến => MD cũng là đường cao=> ME vuông góc AB tại D. (2)
Từ (1) và (2) => AEBM là hình thoi.
d) Vì AEBM là hình thoi => AE // BM, AE = BM.
Mà BM = MC => AE // MC, AE = MC. Do đó AEMC là hình bình hành.
e, Câu e mình không hiểu lắm vì thấy đề bài cứ sai sai làm sao. Mình chỉ chứng minh câu F đối xứng với E qua A thôi nhé.
Gọi I là giao điểm của AC và MF. Vì M đối xứng F qua AC => I là trung điểm MF, AC vuông góc MF tại I.
Chứng minh tương tự câu c ta sẽ được AFMC là hình thoi => AF // MC, AF = MC.
Mà AE // MC, AE = MC (cmt)
=> A, E, F thẳng hàng (tiên đề Ơ-clit) và A là trung điểm của EF (AE=AF)
Vậy F đối xứng E qua A.
a)
DEA = EAF = AFD = 900
=> AEDF là hình chữ nhật
b)
D là trung điểm của BC
mà DE // AC (DE _I_ AB; AC _I_ AB)
=> E là trung điểm của AB
mà E là trung điểm của MD (M đối xứng D qua AB)
=> ADBM là hình bình hành
mà AB _I_ MD (M đối xứng D qua AB)
=> ADBM là hình thoi
c)
D là trung điểm của BC
mà DF // AB (DF _I_ AC; AB _I_ AC)
=> F là trung điểm của AC
mà F là trung điểm của ND (N đối xứng D qua AC)
=> ADCN là hình bình hành
mà AC _I_ ND (N đối xứng D qua AC)
=> ADCN là hình thoi
=> AN // BC
mà AM // BC (ADBM là hình thoi)
=> M, A, N thẳng hàng
AN = CD (ADCN là hình thoi)
AM = BD (ADBM là hình thoi)
=> CD = BD (D là trung điểm của BC)
=> AM = AN
=> M đối xứng N qua A
d)
AEDF là hình vuông
<=> AD là tia phân giác của BAC
mà AD là đường trung tuyến của tam giác ABC vuông tại A (D là trung điểm của BC)
=> Tam giác ABC vuông cân tại A
a) Với ∆ABC ⊥ tại A và M là trung điểm BC, ta có:
- Theo định lý Pythagoras, ta có: AB^2 + AC^2 = BC^2
- Thay giá trị vào, ta có: 6^2 + 8^2 = BC^2
- Tính toán, ta có: 36 + 64 = BC^2
- Tổng cộng, BC^2 = 100
- Vì BC là độ dài, nên BC = √100 = 10cm
- Vì M là trung điểm BC, nên AM = MC = 10/2 = 5cm
b) Để chứng minh ABEC là hình chữ nhật, ta cần chứng minh AB // EC và AB = EC.
- Vì M là trung điểm BC, nên AM = MC.
- Vì ∆ABC ⊥ tại A, nên góc BAC = 90 độ.
- Vì M là trung điểm BC, nên BM = MC.
- Vì BM = MC và góc BAC = 90 độ, nên ∆BAM ≅ ∆CAM theo góc-góc-góc.
- Từ đó, ta có AB = AC và góc BAM = góc CAM.
- Vì AB = AC và góc BAM = góc CAM, nên ∆ABM ≅ ∆ACM theo cạnh-góc-cạnh.
- Từ đó, ta có góc AMB = góc AMC và BM = MC.
- Vì góc AMB = góc AMC và BM = MC, nên ∆BME ≅ ∆CME theo góc-góc-góc.
- Từ đó, ta có góc BME = góc CME và BM = MC.
- Vì góc BME = góc CME và BM = MC, nên BM // EC.
- Vì BM // EC và AB = AC, nên AB // EC và AB = EC.
- Từ đó, ta có ABEC là hình chữ nhật.
c) Để chứng minh AH = IK và NO = 1/2 IK, ta cần chứng minh ∆AHN ≅ ∆IKO.
- Vì AH ⊥ BC và IK ⊥ AB, nên góc HAN = góc KIO = 90 độ.
- Vì AH ⊥ BC và HN ⊥ AN, nên góc HAN = góc HNA.
- Vì IK ⊥ AB và KO ⊥ AO, nên góc KIO = góc KOI.
- Vì góc HAN = góc HNA và góc KIO = góc KOI, nên ∆AHN ≅ ∆IKO theo góc-góc-góc.
- Từ đó, ta có AH = IK và NO = 1/2 IK.
d) Vì ∆AHN ≅ ∆IKO, nên góc INK = góc HNO.
- Vì NO = 1/2 IK, nên góc HNO = góc INK.
- Từ đó, ta có góc INK = góc HNO.
a) Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
=> \(AB^2+AC^2=BC^2\)
=> Tg ABC vuông tại A(định lí Pytago đảo)
b) _D đối xứng với H qua AB(gt)=>DH vuông góc AB hay MH vuông góc AB. Mà AB vuông góc AC =>AC //MH hay AN // MH(1)
_Cm tương tự: AM //HN(2)
_(1),(2)=> Tứ giác AMHN là hình bình hành
Mà ^MAN=90° => AMHN là hcn
=> AH=MN (đpcm)
c) _Nối D với E, A với E
_Tg AHN =tg AEN(c.g.c) => AE=AH(3)
Mà AH=MN(cmt) => MN=AE(4)
(3),(4)=> AMNE là hbh => AE // MN(*); AE=MN(5)
_ Xét tg DEH ta có: M là trung điểm DH; N là trung điểm EH (tích chất đối xứng)
=> MN là đường trung bình của tg DEH
=> MN // DE(**); MN= DE/2(6)
_(*),(**)=> D, A, E thẳng hàng(7)
_(5),(6)=> AE= DE/2 kết hợp với (7)=> A là trung điểm DE
=> D đối xứng với E qua A
B A C M 6cm 8cm M F O
Tam giác ABC có\(\widehat{A}=90\)
mà MB=MC
Suy ra AM là đường trung tuyến ứng với cạnh huyền
hay \(AM=\frac{BC}{2}=\frac{8}{2}=4\left(cm\right)\)
Vậy AM=4cm
b) Vì điểm A đối xứng với E qua M
nên MA=ME
Mà MA=MB=MC ( đường trung tuyến ứng với cạnh huyền)
Nên MA=ME=MB=MC
Vậy ABEC là hình chữ nhật
c) Gọi O là giao điểm của MF và AC