K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

Cách 1:

Kẻ \(IH\perp AB,IK\perp AC\).Ta có \(\Delta IHE=\Delta IKD\)(cạnh huyền-cạnh góc vuông)

 \(\Rightarrow\widehat{IEH}=\widehat{IDK}\)          (1)

Xét 4 trường hợp :

a) H thuộc đoạn BE ,K thuộc đoạn CD ( hình a)

Từ (1) \(\Rightarrow\widehat{A}+\frac{\widehat{C}}{2}=A+\widehat{\frac{B}{2}}\) ,do đó \(\widehat{C}=\widehat{B}\)

A E H I D K B C Hình a

A K D E H B C I Hình b

b) H thuộc đoạn BE,K thuộc đoạn AD.Chứng min tương tự như phần a ta được \(\widehat{C}=\widehat{B}\) 

c)  H thuộc đoạn AE ,K thuộc đoạn AD (hình b )

Từ (1) ta có : 

\(\widehat{A}+\frac{\widehat{C}}{2}=A+\widehat{\frac{B}{2}}\)

\(\Rightarrow\widehat{A}=\widehat{\frac{B}{2}}+\widehat{\frac{C}{2}}\)

\(\Rightarrow2\widehat{A}=\widehat{B}+\widehat{C}\)

\(\Rightarrow3\widehat{A}=\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{A}=60^o,\widehat{B}+\widehat{C}=120^o.\)

d) H thuộc đoạn AE,K thuộc đoạn CD.Chứng min tương tự như phần c ta được : \(\widehat{B}+\widehat{C}=120^o\).

Cách 2

Không mất tín tổng quát,giả sử \(AD\ge AE\).Xét 2 trường hợp :

a) Trường hợp AD= AE ( hình c)

\(\Delta ADI=\Delta AEI\left(c.c.c\right)\Rightarrow\widehat{ADI}=\widehat{AEI}\)

\(\Delta ADB\)và \(\Delta AEC\) có \(\widehat{A}\) chung,\(\widehat{ADI}=\widehat{AEI}\)nên \(\widehat{B}_1=\widehat{C}_1.\)

Do đó \(\widehat{B}=\widehat{C}\)

A E D B C I 1 2 1 2 Hình c

A F E B C D I 1 1 1 Hình d

b) Trường hợp AD>AE.Lấy F trên AD sao cho À=AE (hình d)

\(\Delta AFI=\Delta AEI\left(c.g.c\right)\Rightarrow IF=IE,\widehat{F_1}=\widehat{E}_1\)

Do IE=ID nên IF =ID,do đó \(\widehat{F_1}=\widehat{D_1}\).

\(\Rightarrow\widehat{D_1}=\widehat{E_1}\),tức là \(\widehat{A}+\widehat{\frac{B}{2}}=\widehat{B}+\frac{\widehat{C}}{2}.\)

Biến đổi như cách 1,ta được \(\widehat{B}+\widehat{C}=120^o\).

P/s:Hình xấu :) 

10 tháng 1 2018

Câu hỏi của giang ho dai ca - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại link trên nhé.

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Lời giải:

Từ $I$ kẻ $IK, IL$ lần lượt vuông góc với $AB,AC$

Vì $I$ là giao điểm của hai tia phân giác $AD$ và $CE$ nên đồng thời $I$ cũng nằm trên tia phân giác của góc $ABC$

Do đó khoảng cách từ $I$ đến $AB$ bằng khoảng cách từ $I$ đến $AC$

\(\Leftrightarrow IK=IL\)

Lại có:

\(\angle IEK=\angle CEA=180^0-\angle EAC-\angle ACE=180^0-\angle BAC-\frac{\angle ACB}{2}\)

\(\angle IDL=\angle ADB=\angle DAC+\angle DCA=\frac{\angle BAC}{2}+\angle ACB\)

\(\Rightarrow \angle IEK-\angle IDL=180^0-\frac{3}{2}(\angle BAC+\angle ACB)\)

\(=180^0-\frac{3}{2}(180^0-60^0)=0\)

\(\Rightarrow \angle IEK=\angle IDL\)

Xét tam giác $IEK$ và tam giác $IDL$ có:

\(\left\{\begin{matrix} \angle IEK=\angle IDL\\ \angle IKE=\angle ILD=90^0\\ \end{matrix}\right.\Rightarrow \triangle IEK\sim \triangle IDL\)

\(\Rightarrow \frac{IE}{ID}=\frac{IK}{IL}=1\Rightarrow IE=ID\)

10 tháng 1 2018

Câu hỏi của giang ho dai ca - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại link trên nhé.

11 tháng 5 2020

Sao e ko thấy gì z co

4 tháng 12 2019

Xét \(\Delta AIC\)\(\Delta ABC\)Ta có : \(\frac{A}{2}+\frac{C}{2}+I=A+B+C=180^0\)

\(=>A+B+C-\frac{A}{2}-\frac{C}{2}-I=0\)

\(=>\frac{A}{2}+\frac{C}{2}+B-I=0\)

Vì \(\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90^0\)(Nửa tam giác)

\(=>\frac{A}{2}+\frac{C}{2}+\frac{B}{2}+\frac{B}{2}-I=0\)

\(=>90^0+30^0=I\)

\(=>I=120^0\)Hay \(AIC=120^0\)

16 tháng 7 2017

A B C D E I K 1 2 3 4 1 2 1 2

1/ Ta có: ^B+^C=1800-^A=1200 => 1/2(^B+^C)=600 => ^IBC+^ICB=60 => ^BIC=1200

=> ^DIB=1800-^BIC=600

2/ IK là phân giác ^BIC => ^I1=^I2=600.

^I4=1800-^BIC=600 => ^I4=^I1=600

=> \(\Delta\)CKI=\(\Delta\)CEI (g.c.g) => IK=IE (2 cạnh tương ứng)

3/ Ta có: \(\Delta\)BKI=\(\Delta\)BDI (g.c.g) => IK=ID (2 cạnh tương ứng)

Lại có: IK=IE (cmt) => IE=ID.