K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

A B C A' B' C' H Ta có : \(\dfrac{HA'}{AA'}=\dfrac{S_{HBC}}{S_{ABC}}\)( Vì có chung đáy BC nên tỉ số hai đường cao cũng bằng tỉ số hai diện tích) ( * )

Tương tự , ta cũng có :

\(\dfrac{HB'}{BB'}=\dfrac{S_{HCA}}{S_{ABC}}\) (**)

\(\dfrac{HC'}{CC'}=\dfrac{S_{HAB}}{S_{ABC}}\) (***)

Từ : ( * ; ** ; ***) =>\(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=\dfrac{S_{HAC}+S_{HAB}+S_{HBC}}{S_{ABC}}\)

\(=\dfrac{S_{ABC}}{S_{ABC}}=1\left(đpcm\right)\)


21 tháng 2 2020

gap gium cam on may bn nhiu

21 tháng 2 2020

Tự kẻ hình nha !!

\(\frac{HA}{AA'}+\frac{HB}{BB'}+\frac{HC}{CC'}\)

\(=\frac{S_{HBC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}\)

\(=\frac{S_{ABC}}{S_{ABC}}=1\)

13 tháng 1 2018

Đa giác. Diện tích của đa giácĐa giác. Diện tích của đa giác

13 tháng 1 2018

Ta có:

\(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}\)

\(\dfrac{HA'.BC}{AA'.BC}+\dfrac{HB'.AC}{BB'.AC}+\dfrac{HC'.AB}{CC'.AB}\)

\(\dfrac{S_{BHC}}{S_{ABC}}+\dfrac{S_{AHC}}{S_{ABC}}+\dfrac{S_{AHB}}{S_{ABC}}=\dfrac{S_{ABC}}{S_{ABC}}=1\)

AH
Akai Haruma
Giáo viên
18 tháng 4 2018

Lời giải:

Ta thấy:

\(\left\{\begin{matrix} S_{HBC}=\frac{HA'.BC}{2}\\ S_{ABC}=\frac{AA'.BC}{2}\end{matrix}\right.\Rightarrow \frac{S_{HBC}}{S_{ABC}}=\frac{HA'}{AA'}(*)\)

\(\left\{\begin{matrix} S_{HAC}=\frac{HB'.AC}{2}\\ S_{ABC}=\frac{BB'.AC}{2}\end{matrix}\right.\Rightarrow \frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}(**)\)

\(\left\{\begin{matrix} S_{HAB}=\frac{HC'.AB}{2}\\ S_{ABC}=\frac{CC'.AB}{2}\end{matrix}\right.\) \(\Rightarrow \frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}(***)\)

Từ \((*); (**); (***)\Rightarrow \frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=\frac{S_{HBC}+S_{HCA}+S_{HAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

30 tháng 11 2016

Chứng minh gì lạ vậy bạn.

30 tháng 11 2016

\(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)

11 tháng 12 2017

Ta có : \(\frac{HA'}{AA'}=\frac{S_{HBC}}{S_{ABC}};\frac{HB'}{AB'}=\frac{S_{HAC}}{S_{ABC}};\frac{HC'}{AC'}=\frac{S_{HAB}}{S_{ABC}}\)

nên \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=\frac{S_{HBC}+S_{HAB}+S_{HAC}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

Vậy \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)

7 tháng 4 2019

Ban vao trang Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi