K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2016

Toán lớp 7

a) Theo đề ra ta có: 

AB= 6 (cm) => \(AB^2=6^2=36\)

AC= 8 (cm) => \(AC^2=8^2=64\)

BC=10(cm) => \(BC^2=10^2=100\)

Ta thấy: 100=36+64 => \(BC^2=AB^2+AC^2\) => Tam giác ABC vuông tại A ( Theo định lý Py-ta-go đảo)

b) Xét tam giác vuông BAD và tam giác vuông BED, ta có: 

\(\widehat{B_1}=\widehat{B_2}\)(Do BD là tia phân giác của góc B)

Chung BD

=> \(\Delta BAD=\Delta BED\left(ch-gn\right)\)

=> DE=DA( cạnh tương ứng)

c) Xét tam giác EDC và tam giác ADF, có: 

\(\widehat{CED}=\widehat{FAD}\left(=90^o\right)\)

DE=DA

\(\widehat{D_1}=\widehat{D_2}\)( góc đối đỉnh)

=> \(\Delta ADF=\Delta EDC\left(g.c.g\right)\)

=> DF=DC( cạnh tương ứng)

*) Xét trong tam giác vuông EDC thì góc vuông E là góc lớn nhất =.> CD là cạnh lớn nhất trong tam giác đó => DC>DE

Mà DC=DF => DF>DE

d)

Do tam giác BED = tam giác BAD => BE=BA (1)

Tam giác EDC= tam giác ADF => EC=AF(2) 

Từ 1 và 2 => BE+EC=BA+AF=> BC=BF.

Xét tam giác BCK và tam giác BFK,có: 

BF=BC

\(\widehat{B_1}=\widehat{B_2}\)

Chung BK

=> \(\Delta BFK=\Delta BCK\left(c.g.c\right)\) => CK=KF (*)

và \(\widehat{BKC}=\widehat{BKF}\) mà 2 góc này kề bù với nhau nên mỗi góc có số đo là \(90^o\)

Vậy KB hay là BD là đường trung trực của đoạn thẳng FC.

P/S: ở câu c nếu không muốn viết dài dòng có thể viết : Do BC=BF nên tam giác BCF cân tại B mà BK là tia phân giác góc B nên BK hay BD là đường trung trực của đoạn thẳng FC 

 

10 tháng 5 2016

Huỳnh Châu Giang ơi ....... không biết nhưng cậu xem lại hình đi ..... thật sự nó là đường trung trực mà à đường cao cũng được ....... do đó là tam giác cân nên đường cao và đường trung trực hay là đường trung tuyến ứng với cạnh đối diện của cái góc mà không giống 2 góc kia ý ( không biết diễn giải =.=)

6 tháng 4 2018

ta có : BC2 = 102 = 100

          AC2 +AB2 =62 + 82 =36 +64 = 100

       BC2 =AC2 + AB2

suy ra tam giác ABC vuông tại A ( định lý pytago đảo )

5 tháng 5 2019

a, AB = 6 => AB^2 = 6^2 = 36

AC = 8 => AC^2 = 8^2 = 64

=> AB^2 + AC^2 = 36 + 64 = 100

BC = 10 => BC^2 = 10^2 = 100

=> BC^2 = AB^2 + AC^2 

=> tam giác ABC vuông tại A (định lí PTG đảo)

5 tháng 5 2019

a, xét tam giác ABD và tam giác EBD có : BD chung

góc ABD = góc EBD do BD là phân giác

góc DAB = góc DEB = 90 do ...

=> tam giác ABD = tam giác EBD (ch - gn)

=> AD = ED (đn)

16 tháng 4 2017

Áp dụng định lí py ta go trong tam giác ABC ta có:

AB2+AC2=BC2

62+82=102

36+64=100

Suy ra tam giác ABC vuông (giải hộ câu a thôi tự nghĩ đi)

18 tháng 3 2018

HÌNH BẠN TỰ VẼ NHAhiha

a, Có: \(AB^2+AC^2=6^2+8^2=100\) (1)

\(BC^2=10^2=100\) (2)

Từ (1) và (2)=> tam giác ABC vuông tại A (theo định lí py-ta-go)

b,Xét tam giác BAD và tam giác BED có:

góc BAD=BED (=90 độ)

góc ABD=EBD (BD là tia phân giác )

BD cạnh chung

=>tam giác BAD = tam giác BED ( cạnh huyền-góc nhọn)

=>DA=DE ( 2 cạnh tương ứng)

c,Tam giác DAF có góc DAF=90 độ => 2 góc còn lại <90 độ

=> góc DAF là góc lớn nhất

mà cạnh DF đối diện vs góc DAF

=> DF>DA mà DA=DE => DF>DE

d,Gọi I là giao điểm giữa 2 cạnh BD và FC

Xét tam giác DAF và tam giác DEC có:

DA=DE

góc FAD=CED ( =90 độ)

góc ADF=CDE ( đối đỉnh)

=> tam giác DAF = tam giác DEC ( g.c.g)

=> AF=EC

Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE ( do tam giác BAD = tam giác BED)

AF=EC

=> BF=BC

Xét tam giác BFI và tam giác BCI có:

BF=BC

BI chung

góc FBI=CBI ( do BD là tia phân giác)

=> tam giác BFI = tam giác BCI (c.g.c)

=> FI=IC ( 3)

=> góc BIF = BIC

mà góc BIF +BIC = 180 độ

=> góc BIF = BIC = 90 độ (4)

Từ (3) (4) => BD là đường trung trực của FC

HỌC TỐTok

11 tháng 2 2021

A) Xét ΔABD và ΔEBD có:

+) AB=BE (gt)

+) góc ABD= góc EBD (do BD là phân giác góc B)

+) BD chung

=> ΔABD = ΔEBD (c-g-c)

b)

Qua C kẻ đường thẳng vuông góc với BD tại H.

Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B

=> ΔBCF cân tại B (tính chất)

=> BC= BF (điều phải chứng minh)

c)

Xét ΔABC và ΔEBF có:

+) AB = EB (gt)

+) góc B chung

+) BC= BF (câu b)

=> ΔABC = ΔEBF (c-g-c)

d)

Từ ý a, ΔABD = ΔEBD (c-g-c)

=> góc BAD= góc BED = 90

=> DE ⊥ BC

Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D

=> D là trực tâm

=> FD ⊥ BC 

=> DE trùng với FD

=> D,E,F thẳng hàng