K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMC và ΔDMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔAMC=ΔDMB

b: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔDMC

c: Ta có: ΔAMB=ΔDMC

=>AB=DC

Ta có: ΔAMB=ΔDMC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

d: ta có: ΔAMC=ΔDMB

=>AC=DB

Ta có: ΔAMC=ΔDMB

=>\(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

e: Xét ΔKDM và ΔHAM có

KD=HA

\(\widehat{KDM}=\widehat{HAM}\)

DM=AM

Do đó: ΔKDM=ΔHAM

=>\(\widehat{KMD}=\widehat{HMA}\)

mà \(\widehat{KMD}+\widehat{KMA}=180^0\)(hai góc kề bù)

nên \(\widehat{HMA}+\widehat{KMA}=180^0\)

=>H,M,K thẳng hàng

13 tháng 12 2017

Lời giải:

a,Vì M là trung điểm AC nên MA=MC

MB=MD (gt)=>M là trung điểm của BD

Góc AMB=góc DMC (đối đỉnh)

=> tam giác ABM=tam giác CDM(c.g.c) (1)

b,vì tam giác ABC nhọn(gt)

=>góc B ,góc C nhọn

M là trung điểm của AC và BD

=>M là giao điểm 2 đường thẳng AC và BD

Từ. (1)  => góc ABM=góc CDM (so le)

Góc MCD= góc BAM (so le)

Cạnh AB=CD

=>Tứ giác ABCD là hình bình hành

=>AB//CD

c,vì  H và K là 2 điểm thuộc BD

mà BH =DK (gt)

Từ A kẻ AH_|_ BD; từ C kẻ CK_|_BD

=> AH=CK( vì tam giác ABD=tam giác BCD co BD là cạnh chung)

=>AH//CK

=>góc AKH=góc CHK(2 góc ở vị trí so le)

=> tam giác AHK=tam giác CKH(c.g.c)

=>AK=CH

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

16 tháng 12 2015

a) Xét tam giác ABM và tam giác ACM, ta có:

AB=AC(gt)

BM=CM(gt)

AM: cạnh chung

Do đó:  tam giác ABM = tam giác ACM(c.c.c)

Vậy: Góc AMB = Góc AMC

Mà góc AMB + góc AMC = 180 độ =>

Góc AMB = Góc ACM = 180 độ / 2 = 90 độ

Vậy AM vuông góc với BC

b) Xét tam giác AMD và tam giác AME, ta có:

AD=AE (gt)

Góc DAM = Góc EAM ( theo câu a, cặp góc tương ứng )

AM: cạnh chung

Do đó: Tam giác AMD = tam giác AME (c.g.c)

c) Ta thấy: Góc EDM + Góc KDM = 180 độ ( kề bù )

Vậy ba điểm D,E,K thẳng hàng

16 tháng 12 2015

=> tam giác ABC cân tại A

Xét ABM và ACM có:

AM chung

AB = AC

A1 = A2 (tam giác ABC cân tại A)

Vậy tam giác ABM = ACM

M1 = M2 ; M1 + M2 = 180 (2 góc kề bù)

=> M1 = M2 = 90

=> AM vuông góc BC 

 

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
25 tháng 12 2016

Lâu rồi k giải toán, giờ trở lại vs Toán thân iu

Ta có hình vẽ:

A B C D M I K

a/ Xét tam giác ABD và tam giác CMD có:

AD = DC (vì D là trung điểm AC)

góc ADB = góc CDM (đối đỉnh)

DB = DM (GT)

Vậy tam giác ABD = tam giác CMD (c.g.c)

=> AB = CM (2 cạnh tương ứng)

Ta có: tam giác ABD = tam giác CMD

=> góc BAC = góc MCA (2 góc tương ứng)

b/ Xét tam giác AMD và BCD có:

AD = DC (vì D là trung điểm AC)

góc ADM = góc BDC (đối đỉnh)

DM = DB (GT)

Vậy tam giác AMD = tam giác BCD (c.g.c)

=> góc MAD = góc DCB (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AM // BC (đpcm)

c/ Xét tam giác ABC và tam giác AMC có:

AC: cạnh chung

AB = CM (do tam giác ABD = tam giác CMD)

AM = BC (do tam giác AMD = tam giác BCD)

=> tam giác ABC = tam giác AMC (c.c.c)

d/ Ta có: AB = CM (câu a)

Mà I là trung điểm AB

và K là trung điểm CM

=> AI = IB = MK = KC

Xét tam giác IAD và tam giác KCD có:

AI = CK (đã chứng minh trên)

góc BAC = góc MCA (câu a)

AD = DC (vì D là trung điểm AC)

=> tam giác IAD = tam giác KCD (c.g.c)

=> góc IDA = góc KDC (2 góc tương ứng)

Ta có: \(\widehat{ADM}\)+\(\widehat{MDK}\)+\(\widehat{KDC}\)=1800

=> góc ADM + góc MDK + góc IDA = 1800

=> góc IDK = 1800

hay K,D,I thẳng hàng

22 tháng 10 2016

Giúp mk đi khocroi